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Abstract

The advances in signal processing technology and the development of biocompatible
materials lead to the development of different types of new bioelectronic devices to
circumvent human disabilities, opening the possibility to interface these prostheses
directly with the nervous system. Among these devices are the bioelectronic vi-
sion systems which attempt to convey vision to profoundly blind people. Similarly
to other neuroprostheses the development of bioelectronic vision systems imply the
modeling of the signal processing occurring in the involved neuronal centers, namely
the retina. Within this scope this thesis discusses and assesses several retina mod-
els, and proposes two additional models, representative of the most relevant models’
classes, which further extends the available models and alternatives for retina model-
ing. A set of neuronal metrics, from different classes, are also discussed and applied
to the tuning and assessment of neuronal models. The drawbacks of its application
are discussed and several effective methods for the selection of the metric’s parame-
ters are provided. The last topic addressed in this thesis is system identification and
parameter estimation of models, with the introduction of a new algorithm, based on
multiple model adaptive estimators, that can be used in the identification and tuning
of both linear and nonlinear systems, which are applied in the context of neuronal
modeling.
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Resumo

Os avanços das técnicas de processamento de sinal e o desenvolvimento de novos ma-
teriais biocompatíveis permitem o desenvolvimento de diversos tipos de novos dispos-
itivos bioeletrónicos para contornar diferentes deficiências humanas, abrindo a pos-
sibilidade de interface direta destes dispositivos com o sistema nervoso. Entre estes
dispositivos estão os sistemas de visão bioeletrónicos que tentam restaurar algum
tipo de visão a cegos profundos. No entanto, tal como é comum no desenvolvimento
de neuropróteses, o desenvolvimento de sistemas de visão bioeletrónicos implica a
modelação do processamento de sinal que ocorre nos centros neuronais envolvidos,
sendo a retina de particular importância. Nesta tese discutem-se e avaliam-se di-
versos modelos de retina, sendo propostos dois modelos adicionais representativos
das principais classes de modelos, conjuntamente com técnicas alternativas para a
modelagem da retina. São igualmente analisadas e discutidas um conjunto de métri-
cas neuronais, representativas das diferentes classes de métricas existentes, que são
aplicadas na afinação e avaliação dos modelos neuronais. São apresentados os diver-
sos inconvenientes da sua aplicação e são propostos métodos eficazes para a selecção
dos parâmetros para estas métricas. Um último tópico abordado é a identificação
de sistemas e a estimação de parâmetros de modelos, com a introdução de um novo
algoritmo baseado na técnica de estimação adaptativa por múltiplos modelos. Esta
técnica pode ser utilizada quer na identificação e ajuste de sistemas lineares como de
sistemas não lineares, sendo aplicada no contexto da modelagem neuronal.

Palavras-Chave

Modelos computacionais da retina, métricas para o código neuronal, identificação de
sistemas biológicos, sistemas de visão bioeletrónica.
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f(τ)δ(x− τ)dτ = f(x);

δ(t) =
d H(t)

dt

H(t) the Heaviside step function:
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{
0, t < 0
1, t ≥ 0

H(t) =
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−∞
δ(τ)dτ
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y(t) =

+∞∫

−∞
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Learning is the only thing the mind never exhausts,

never fears, and never regrets.

Leonardo da Vinci
(Vinci, Italy, 1452 – Amboise, France, 1519)

The more I learn, the more I realize how much I do

not know.

Socrates
(Athens, Greece, 469 a.C. – 399 a.C.)

1
Introduction

1.1. Motivation

I
n recent years the development of prosthetic devices to circumvent diverse hu-
man impairments has experienced an increasing interest. Several research insti-
tutions, mostly universities, have been involved in the development of this area,

and important professional organizations have promoted a series of relevant publi-
cations about these subjects (like [IEEE, 2012]), with an exponential growth in the
number of projects and papers during the last years.

A particular area of this research is concerned with retina modeling and the de-
velopment of visual prostheses in order to convey some kind of vision to visually
impaired people. The expression "some kind of vision" is frequently employed by sci-
entists when referring to this goal and reflects the huge extension of this task due to
the complexity of the human visual system, ranging from the retina’s neural circuitry
to the involved deep brain processes.

Vision is a fundamental sense of paramount relevance in modern society. It is
through vision that the human being perceives much of the surrounding information,
feels diverse forms of art and communicates with other human beings. Nowadays, in
modern society, much of the information is supported on images and video putting
visually impaired people in great disadvantage. However, the greatest difficulties
arise in individual terms.

For everyday life, vision is an indispensable resource. For performing even the
most simple tasks vision is indispensable, therefore blindness represents a severe
impairment. People who lost their sight usually become very dependent of others,
which constitutes a social problem. For blind people it is very difficult to recognize
other people, perceive landscapes, and discern objects of the daily life. In addition,
the visually impaired usually have severe motion restrictions and depend on others
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1. Introduction

to move safely. People who have been able to see for years lose a relevant part of
their quality of life when they become blind. Loss of vision is not only an enormous
psychological burden, but it also causes severe handicaps and tremendous difficulties
in moving in strange, and even in formerly familiar, environments.

Human vision disabilities can be of different types and have different origins. Thus,
depending on the nature of the disability, different approaches have been used to
circumvent vision impairments. Impairments in the eye’s optical system, which is
responsible for transmitting and focusing light as a sharp image on the retina, usually
are usually easily overcome with the use of an external corrective optical system.
Optical lenses, like glasses or contact lenses, are a typical optical choice to remedy
this problem. Another option is surgical intervention, as in the case of cataracts,
where an eye lens transplant can be performed1.

The current challenge is to circumvent damages at the retina and superior vision
center levels, that frequently lead to profound blindness. Besides traumatic accidents
several diseases, like diabetic retinopathy or glaucoma, age-related macular degener-
ation (AMD) and retinitis pigmentosa (RP) can damage the retina and the optic nerve
permanently. In the case of profound blindness the remaining hope is to combine
the increasing knowledge about the biology and anatomy of the human visual system
with the amazing advances in science and technology. The combination of knowl-
edge from these domains towards the development of vision prosthesis established an
emerging field designated by bioelectronic vision.

Several projects involving multidisciplinary research groups have been promoted
to develop and demonstrate the feasibility of artificial vision systems. The huge
challenge of artificially restoring vision to the blind poses engineering and biological
problems hard to overcome and requiring at the end the meandering process, in per-
sonal, legal and ethical terms, of clinical human testing. Due to the initial cost of
such prostheses, mainly people living in industrialized countries are expected to be
the first beneficiaries from such devices, when bioelectronic vision becomes possible
through the design of visual neuroprostheses. Therefore, blind people affected by
diabetes or age-related macular degeneration (AMD) and retinitis pigmentosa (RP)
should be the ones to first take advantage of visual neuroprostheses, retinal or cor-
tical, while people suffering from glaucoma could only take advantage of cortical
neuroprosthesis due to the generalized damage of the retina neural layer and optic
nerve.

Retinal neuroprostheses require the presence of viable cells in the inner retina.
Therefore, diseases limited primarily to the outer retina are potentially treatable with
a retinal neuroprosthesis. The references [Margalit et al., 2002] and [Weiland et al.,
2005] present an extended overview of retinal neuroprostheses. A retinal neuropros-
thesis example, entitled the "Bionic Eye", uses a new ceramic material to substi-
tute the retina’s photoreceptors, that acts as an optic detector transducing light
into electrical impulses, by means of the photo-ferroelectric effect [Wu, 2006]. An-

1Appendix A lists the most common causes of blindness with a description of the diseases associated
and its prevalence.

2



1.1. Motivation

other example of a retinal neuroprosthesis is the artificial silicon retina (ASR) mi-
crochip [Chow et al., 2004], which uses the well known and developed silicon tech-
nology to design a device that tries to mimic the retina [Optobionics Corporation,
2012].

For profoundly blind people, where the earlier visual centers like the retina and
optic nerve are irreversibly damaged, the remaining solution to provide a vision
sense is to stimulate directly the superior vision centers in the brain. The efforts
for conveying some kind of vision to profoundly blind people already have some his-
tory [Rizzo III and Wyatt, 1997]. The first permanent device developed and applied
for chronic stimulation of the neural tissue was developed in 1968 [Brindley and Lewin,
1968]. Although it was observed that the electrical stimulation of the occipital
lobe of the human cortex causes a subject to perceive phosphenes, that are on the
base of the visual sensations, it was also concluded that the indiscriminate injec-
tion of electrical current into the brain can produce short and long term compli-
cations [Agnew and McCreery, 1990]. The Dobelle Institute, founded by the pio-
neer in artificial vision William Dobelle, conducted a series of experiments earlier
in 1974 [Dobelle and Mladejovsky, 1974; Dobelle et al., 1974] where blind patients
have been implanted with cortical neuroprostheses. Despite a relative success, it also
shown that focal epileptic activity can be induced by electrical stimulation.

Therefore, in what concerns brain stimulation the solution points to the use of
microelectrode arrays made available by the semiconductor technology manufactur-
ing, such as the microelectrode array, developed in the Utah University and known
as the Utah Electrode Array, to stimulate the visual neuronal structures [Maynard,
2001]. These microelectrodes can be deeply inserted in the virtual cortex by us-
ing a pneumatic insertion technique [Maynard et al., 1997; Normann et al., 1999],
for intracortical stimulation with very low and controlled electrical currents without
provoking major injuries. Presently, silicon micromachining and micromanufactur-
ing technologies allow the fabrication of very small arrays with a large number of
microelectrodes capable of stimulating only the neurons nearest to the electrode and
with a small amount of current (in the order of dozens of micro ampere). The refer-
ence [Donoghue, 2002] provides a general perspective of cortex electronic interfaces.

Figure 1.1 shows a schematic overview of the entire visual system, from the eye
to the brain. The foremost component of the visual system is the eye. The eye
is responsible for gathering and transducing light energy– photons– to neural elec-
trical signals, in the form of electrical impulses, that are successively transformed
and posteriorly transmitted to the brain for further information extraction. Roughly
speaking, the eye is composed by an optical system that focuses light onto the retina,
a neuronal tissue. In the retina the light patterns are encoded into electrical signals
where the neuronal processing starts, so that the retina can be seen as an extension
of the brain, the only brain’s accessible component outside the skull. A visual neu-
roprosthesis must start by mimicking the optical eye system, which does not pose
any major technological difficulties nowadays, and mimic the neuronal processing
occurring in the retina, where the true challenge lies. Therefore, a significant stage
of a vision prosthesis design comprises the choice and evaluation of a retina neural
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Figure 1.1. Diagram of the human visual system.

processing model.

Bioelectronic vision systems can be classified in two main classes of visual neu-
roprostheses: i) retinal neuroprostheses, and ii) cortical neuroprostheses.2 Retina
neuroprostheses are suitable only when the front end of the retina is functioning
properly. When the retina is not functioning, including the optic nerve, and only
the brain visual centers remain intact the implantation of a cortical neuroprosthesis
is the last hope. For profoundly blind people, whose optical neurotransmitters are
irreversibly damaged, cortical neuroprostheses are interfaced directly with the visual
processing center in the brain, known as the visual cortex area V1, circumventing
the earlier vision processing centers.

The concept and components of a bioelectronic vision system supported on a
complete visual neuroprosthesis that interfaces directly with the brain is depicted
in Fig. 1.3. Figure 1.2 depicts the main components of a bioelectronic vision system,
and it includes a set of components which, depending on the type of visual neuro-
prosthesis, can be the biological structure itself or its electronic circuit counterpart.3

Image acquisition can be achieved by a generic small and full functional digital
camera that is suited for a vision prosthesis, both for cortical and optic nerve neu-

2Section C.3 presents a more detailed description of the various types of visual prosthesis.
3Section C.2 describes the components of a bioelectronic vision system in more detail.

Video
Encoder

Signal
Processing
Electronics

Power and
Control

Telemetry

Stimulator
Electronics

Neural
Interface

Figure 1.2. Components of a visual neuroprosthesis.
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roprostheses, in terms of dynamic range, sensitivity and depth of field and, as also
important, in terms of aesthetic. For retinal neuroprostheses the image encoder can
be integrated into the neural interface, and lay at the plane of the retina, with the
advantage that the eye optics can be used to project the image in the encoder.

The digital signal processing system has to transform the visual space image into
a set of discrete signals, modeling the neuronal signal processing occurring in the
retina, and should take into account the visuotopic organization of the target struc-
ture (the retina or the cerebral cortex, depending on the prosthesis type). Then a
module is used to transmit power, control signals, and the encoded visual stimulus
to the implanted electronics to induce the perception of phosphenes – the entoptic
phenomenon characterized by the sensation of seeing light.

In the signal processing block the more difficult challenge is the mapping of the
visual space into the visuotopic organization of the target structure, particularly the
visual cortex. This is an even somewhat complicated task due to the uniqueness of
this map among individuals, and because it is conformal only at the low resolution
level; for high spatial resolutions this mapping seems to be locally random. Therefore,
parameterizable models have to be developed for implementing this module and
properly stimulating individuals. This is a somewhat more complicated task due to
the plasticity of the visual pathways and the different possible combinations between
electrodes and phosphenes elicited. Based on the developed models, this module
transforms the image into a discrete set of signals that drive the stimulators. To
adapt the intensity of the incoming light signals into the range level of the neurons
being stimulated an automatic gain control (AGC) can perform similarly to what is
done by the photoreceptors. The first three components of the visual neuroprosthesis
in Fig. 1.2 are susceptible of being included into a single device attached to a set of
eyeglasses. The remaining blocks of the visual neuroprosthesis are likely to be located
inside the patient.

The information can be transmitted to the neural interface using a percutaneous
connector or using receptive field (RF) telemetry. The neural stimulator receives
power, encoded data, and control signals from the connection. It must be capable
of exciting multiple electrodes at the same time to evoke consistent phosphenes, and
must be capable of controlling the amount of power delivered to avoid the dam-
age of the surrounding tissues, and should also be capable to disable nonfunctional
electrodes.

The last element in a vision prosthesis is the interface with the nervous system.
This interface makes the bridge between the nervous system and the signal processing
electronics. It mediates the transduction between the electrical currents generated
by the electronic device into ionic currents that flow inside the human body. The
materials employed in the fabrication of retinal neuroprosthesis are silicon chips and
specific ceramic materials. For cortical interfaces the oxidized iridium is a candidate
material since it has shown good biocompatibility and a good electronic to ionic
current transducer. Although, there are many compatibility issues that should be
taken into account.

Resuming, when the visual signal reaches the optic nerve or the visual cortex in
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a healthy person, it has been subjected to a series of neural processing stages. A
vision prosthesis must mimic these processing stages. When the interface to the
visual system is made at the level of the retina’s ganglion cell layer, as for the case
of an epiretinal neuroprosthesis, the information at the output must be identical to
the one produced by a healthy retina; the transformation of the visual space to the
retinotopic space is done by modeling the neural processing of the retina. For the
case of a cortical neuroprosthesis the signal processing occurring along the visual
pathway should be adequate to generate the proper stimulus for the neural interface.

The discovery that by direct electrical stimulation of the visual centers, that range
from the eye to the brain visual cortex, it was possible to elicit visual sensations -
the phosphenes [Bair and O’Keefe, 1998], triggered the research and development of
devices capable of providing some kind of vision. This endeavor is being recently
boosted by the advances in electronics and materials science. Research is being done
to design and develop cortical visual neuroprostheses through intracortical stimula-
tion, but none of these prostheses has been permanently applied for chronic stimu-
lation [Warren and Normann, 2003].

The European project "Cortical Visual Neuroprosthesis for the Blind (CORTIVIS)"
has been conducted over the last few years to design and develop a complete vi-
sual neuroprosthesis designed to restore useful vision to profoundly blind people
[Project CORTIVIS, 2006]. Namely, the discrimination of shape and location of ob-
jects, allowing the navigation in a familiar environment, and to read enlarged text,
resulting in a substantial improvement in the standard of living of blind and visu-
ally impaired persons. In this project intracortical microstimulation through one or
more Utah Electrode Arrays implanted into the primary visual cortex is performed.
The system is composed of a primary unit located outside the body and a secondary
unit, implanted inside the body, that communicate with each other using wireless
communication technology. A prototype of the proposed system including all com-
ponents is described in detail in [Martins and Sousa, 2009]. A device preview is
shown in Fig. 1.3, where the interface with the visual system is made at the cortical
level, by intracortical microstimulation using the Utah Microelectrode Array and the
power and control signals are transmitted by a radio frequency link. In the paper
by [Piedade et al., 2005] the different electronic modules developed for the prosthe-
sis are described. A relevant part of the project was the evaluation and choice of
the retina’s processing model to be implemented in the signal processing module,
to convert the image of the visual field to the set of discrete signals for the neural
stimulation at the visual cortex area.

Motivated by the open questions left by the CORTIVIS project, a second project
termed "Retina Neural Code (RNC)", funded by the Portuguese Foundation for Sci-
ence and Technology (FCT), was developed in the meanwhile [Project RNC, 2008].
The main goal of the RNC project was to further unveil the coding mechanisms of
the retina by investigating more accurate models and to study the metrics employed
in the evaluation of such models.
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Figure 1.3. The Cortivis cortical visual prosthesis concept [Project CORTIVIS, 2006].

1.2. Main Objectives

A first goal of this thesis is to investigate and analyze retina models from the most
representative classes suitable to be used in a bioelectronic vision system. After this
first step a subsequent goal is to develop and propose improvements into the models.
These improvements follow two directions: the proposal of alternative structures
for the models such that the response accuracy to visual stimuli is improved, and
afterwards to research and apply alternative tools, that have shown good results in
other scientific areas, to the estimation and tuning of retina models.

Another main objective is centered in the analysis of neuronal metrics. Among the
neuroscientists’ community there is not a consensus about the coding and decoding
of the neural code performed by the nervous centers. The studies on this subject
did not come to a final conclusion so far of what are the relevant features of the
neuronal code used by the neuronal centers to encode and extract information, since
the neuronal signals are composed by a temporal series of stereotyped events, called
action potentials or spikes, which are modeled as a Dirac delta function occurring
at a precise time instant. In the scientific literature on neural centers models, and
vision centers in particular, several metrics are employed that explore a particular
characteristic of the neuronal response and are applied in a somewhat ad-hoc manner.
The goal within this context is to gather the neuronal metrics appearing in the
literature, and study its applicability in the tuning and assessment of retina models.
An important issue is the devising of methods for the selection of meaningful values
for the metrics’ parameters instead of the ad-hoc procedure followed until now.

Another objective, which is closely related to the first one, was to apply and develop
alternative methods to the estimation of system models, and neuronal retina models
in particular. There is a huge number of methods and algorithms currently available

7



1. Introduction

that are used in engineering to model and estimate the most diverse systems. Among
these algorithms are adaptive techniques based on linear and nonlinear estimates of
the system’s state to infer its parameters. These algorithms are normally based on
the Kalman filter and on its several flavors. This thesis proposes and describes a new
method, based on the multiple model adaptive estimators, to estimate the neuron
state and training its parameters. Starting from the classical perspective, and using
a linear system model, this method is extended to nonlinear systems by applying
nonlinear estimators, like the extended Kalman filter [Gelb, 1974] and the unscented
Kalman filter [Julier and Uhlmann, 1997].

1.3. Main Contributions

As stated before, the work presented in this thesis is focused in three main areas
related to the field of artificial vision. First, in the modeling of visual systems,
particularly the neural processing occurring in the retina. The assessment of the
retina models leads to another important topic that is the organization and analysis
of metrics to evaluate the neuronal activity, which is the second main topic developed.
A third topic pursued is the identification and tuning of systems parameters, with
a special emphasis on neuronal models, with the development of a new method to
identify system models and estimate its parameters.

1.3.1. Development and Test of Retina Models

The accurate modeling of the retina behavior is of paramount importance for the
development of visual prosthesis. Several types of approaches and models have been
proposed by scientists. The majority of the neuronal models, including the retina,
follow one of two principal approaches: a (stochastic) integrate and fire mechanism
or a nonlinear Poisson process.

However, most of the models are concerned with the description of a particular
phenomena and are not meant to be used in a prosthesis. In a preliminary stage a
series of representative retina models were collected and assessed using different types
of stimuli. In a second stage these two types of models were further investigated.
For the stochastic integrate and fire model it was demonstrated that if certain noise
conditions are met, namely if the noise process if of Gaussian nature (which is a
mild condition due to the central limit theorem) it is equivalent to a Poisson model.
Within this framework a dynamic model for the retina is proposed that besides
the usual feedforward and feedback mechanisms also includes a dynamic feedforward
and feedback path, both dependent on input stimulus and on spike history, where the
amplitude is modulated by a linear function of the stimulus and spike history. This
model is shown to have a better response, in terms of several error metrics, against
the typical static model by increasing the spiking time precision. These results were
published in [Tomás et al., 2008].

White noise analysis techniques were also applied to the specific modeling of the
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retina. This time a canonical linear-nonlinear-Poisson (LNP) model was chosen and
white-noise analysis was applied to obtain the linear and non-linear filter kernels.
This model departs from the classical LNP model, which uses a single linear compo-
nent stimulus(see [Chichilnisky, 2001]), by including several linear components of the
stimulus that are individually combined by nonlinear kernels to generate the firing
potential. To avoid the need of a huge amount of neuronal data, usually needed
to populate an n-dimensional histogram, it was proposed the use of generalized ad-
ditive models to model the nonlinear functionals that transform the linear kernels.
These nonlinear functionals are estimated with the weighted backfitting algorithm.
This approach has the advantage that permits to plainly include both excitatory and
suppressive kernels in the model, making the retina’s model response more accurate.
This model, and the obtained results, are described in [Martins et al., 2007].

Resuming, the first stage of this work allowed to investigate and further develop
retina models by proposing two additional modeling approaches within the two main
frameworks of retina models.

1.3.2. Neural Metrics

Although not completely independent of the previous topic, a second important stage
of this work was the organization and experimental analysis of neural metrics and
selection of appropriate values for its parameters.

In general, in engineering to know and measure the accuracy of how a model mimics
a given system is of paramount importance. The evaluation of retina models raises
a few questions. What metric should be used to evaluate a retina model? Are these
metrics similar to the common metrics employed in other engineering fields? How
the results from system modeling and identification methods used in engineering can
be used in the development of retina models? The answers to these questions lead
to the organization and experimental analysis of a set of neural metrics and methods
for the appropriate selection of its parameters’ values.

Many of the neural metrics proposed in the literature have been developed for the
purpose of studying particular aspects of the neural code or to compare the responses
of specific neural systems, so that their application is not general. Furthermore, no
quantitative measurements or methods are provided to decide which metric should
be used in a given context. These metrics normally depend on one or more free
parameters and no clues or methods existed to choose these parameters properly. The
followed approach was to use these metrics for directly comparing neural responses
and study their sensitivity to the different parameters, and applying the results to
the tuning and assessment of retina models, where some metrics have shown to be
more appropriate than others.

Since the neuronal metrics are targeted to measure different characteristics of the
neuronal response, they can be classified into one of the classes: firing rate metrics,
spike train metrics, and firing event metrics.

The firing rate metrics measure the reliability of the neural code in terms of the
firing rate by comparing their mean firing rate. These metrics are close to the ones
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found in the engineering fields like the mean-squared error. This class comprises
three metrics, namely the mean squared error (MSE), the normalized mean squared
error (NMSE) and the percent-Variance-Accounted-For (%VAF). The main problem
with this type of metrics relies in the calculation of the mean firing rate, since the
neural response is impulsive (series of impulse Dirac delta functions) it becomes very
dependent on the size of the time bin used. To avoid these problems the firing rates
are smoothed before being compared, a process that should also be done with care.
Namely, for the smoothing of the firing rate a Gaussian function is used, with zero
mean and standard deviation σ. In order not to remove the higher frequency compo-
nents of the firing rate, σ must be chosen has the minimum value that minimizes the
inter-trial comparison, which has the advantage that as the number of trials used in
the ensemble average increases the chosen value for σ decreases and the accuracy of
the firing rate estimate increases. The analysis of the %VAF neuronal metric resulted
in the conclusion that it should not be used since it can give a deceiving value for
the error.

The spike train metrics measure the time precision in the occurrence of individual
spikes, so that they compare directly the spike trains or an adequate altered version
of them. This class of metrics include the spike time metric, the spike interval metric
and the spike distance metric. The most surprising fact about the first two metrics is
that dependent on the value of its free parameter, the error (metric distance) between
a true spike train and between a null spike train (train with no spikes) can be smaller
than between two trains from the same neuron generated with the same stimuli. To
chose the parameter once again the intertrial error must be obtained first and then
the value of the parameter must be such that the it is smaller than the comparison
with the null train. Concerning the spike distance metric its parameter must take the
value which gives the best temporal precision from a prior intertrial error measure.

Finally a spike events metric is also analyzed. This metric measures the distance
between bursts of spikes from sets of spike trains. Its has several sensible steps ranging
from the obtention of the peri-stimulus time histogram, with the implicit choice of
the standard deviation for the smoothing function, to the delimitation of the events
(a bunch of spikes with particular characteristics), which are interconnected and are
very sensible to each other.

The main conclusions to be drawn from the work presented in this thesis are
that the optimum parameters for the metrics’ parameters depend on the data sets,
however a general set of rules was obtained for selecting its value. These results are
presented in [Martins et al., 2009] with subsequent applications to the tuning and
evaluation of a series of representative retina neural models.

1.3.3. System Modeling and Identification

In the topic of system modeling and identification, this thesis proposes a system
identification and a parameter tuning technique. In the effort to develop retina
models, a method from the engineering field is applied to a state-space description
of a neuron model whose parameters are estimated using multiple-model adaptive
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estimation, and by employing a developed method for the selection and refinement
of the models’ parameters.

The multiple-model adaptive estimation (MMAE) have been used as a standard
technique in system identification and state estimation. In its standard utilization the
MMAE selects the system model with the highest probability by following a Bayesian
criteria from a fixed set of pre-established models.

In the proposed approach a set of models is established with very few restrictive
conditions. For N unknown parameters the number of models in the set must be
2N + 1, independently of the different values that the parameters can take. In the
standard application of the MMAE for N parameters that can take M different values
independently, the number of models to be used is MN , so that the proposed approach
is a minimum value for this expression. The constructed model set constitutes what is
called a constellation of models. Relying in the properties of the MMAE, the model’s
constellation is shifted in the unknown parameters’ space, a process designated by
tracking, until the unknown parameters point is encircled by the constellation, a
process termed bracketing, afterwards the constellation volume is reduced - shrinking
process - and the parameters of the model are then refined to an arbitrary precision.
This method allows naturally the identification of time-variable systems provided
that the parameters change infrequently than the convergence rate of the MMAE.

This method was applied with good results to the identification and tuning of a
simple stochastic integrate and fire neuron model [Martins et al., 2011a]

This technique was first mentioned, despite briefly and for the case of an unidi-
mensional unknown parameter space, in [Martins, 2006]. The identification method
and the results obtained and were published in [Martins et al., 2011a,b].

Organized list of publications:

• Review of retina models; test and evaluation of representative models of differ-
ent classes:

– Tomás, P., Martins, J. C., and Sousa, L. A. (2008). Towards a unified
model for the retina: Static vs dynamic integrate and fire models. In
International Conference on Bio-Inspired Systems and Signal Processing
(BIOSIGNALS 2008), volume 2, pages 528–533, Funchal, Madeira, Por-
tugal. [Tomás et al., 2008]

– Martins, S. F., Sousa, L. A., and Martins, J. C. (2007). Additive logistic
regression applied to retina modelling. IEEE International Conference on
Image Processing, 2007. ICIP2007., 3:309–312. [Martins et al., 2007]

– Martins, J. C. and Sousa, L. A. (2005). Comparison of computational
retina models. In 5th IASTED Conference on Visualization, Imaging, and
Image Processing,, pages 156–161, Benidorm, Spain. [Martins and Sousa,
2005]
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• Organization and experimental analysis of neuronal metrics and selection of
appropriate parameters values:

– Martins, J., Tomás, P., and Sousa, L. (2009). Neural code metrics: Analysis
and application to the assessment of neural models. Neurocomputing,
72(10 – 12):2337 – 2350. [Martins et al., 2009]

• Parameters estimation and system identification with a new method for the
adaptive selection of models’ parameters:

– Martins, J. C., Caeiro, J. J., and Sousa, L. A. (2013). Constellation based
multiple model adaptive estimators for system identification and parame-
ters tuning. Digital Signal Processing, Elsevier. submitted. [Martins et al.,
2013]

– Martins, J. C., Caeiro, J. J., and Sousa, L. A. (2011b). On the use of
adaptive model constellations in multiple model adaptive estimators. In
Proc. of RecPad 2011 - 17th Portuguese Conference on Pattern Recogni-
tion, Porto, Portugal. [Martins et al., 2011b]

– Martins, J. C., Caeiro, J. J., and Sousa, L. A. (2011a). A new approach to
system identification and parameter tuning with multiple model adaptive
estimators. In 7th International Symposium on Image and Signal Process-
ing and Analysis (ISPA 2011), pages 72 –77. [Martins et al., 2011a]

• Many of the background material that supports this work was published as the
book:

– Martins, J. C. and Sousa, L. A. (2009). Bioelectronic Vision: Retina Mod-
els, Evaluation Metrics, and System Design, volume 3 of Series on Bio-
engineering & Biomedical Engineering. World Scientific, Singapore.
[Martins and Sousa, 2009]

1.4. Thesis Organization

This document is compose of 7 chapters and several appendices. It starts with a
general introduction to the human vision system in Chap. 2, posing a particular em-
phasis on their anatomical and neurophysiological characteristics relevant for mod-
eling. Chapter 3 presents the common approaches followed in the neuronal model
and in the retina modeling, describing examples of various types of models employed
to describe the retina. Chapter 4 describes and analysis the retina models proposed
and developed that are representative of the two main classes of neuronal models.
Chapter 5 gathers the neuronal metrics employed in neuroscience, addresses their
usefulness in evaluating neuronal responses and its applicability in the training and
evaluation of neuronal models by proposing methods to wisely pickup its parameters.
In Chap. 6 the system identification method proposed in this thesis is detailed with
the results applied to the identification of neuron models, both a linear model and
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a non-linear model. Finally, this thesis ends with Chap. 7 where the main conclu-
sions are stated and possible future research directions are pointed. This thesis is
complemented with several appendices included to increase the document readability
and completeness by including additional information about the subject. Appx. A
describes the main causes of blindness and its prevalence, Appx. B presents several
methods and techniques used to study and characterize the retina and the neuronal
response, and finally Appx. C describes the several approaches followed in the de-
velopment of bioelectronic vision systems by briefly presenting several representative
examples of each type of prosthesis.
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A good theoretical model of a complex system should

be like a good caricature: it should emphasize those

features which are most important and should down-

play the inessential details. Now the only snag with

this advice is that one does not really know which

are the inessential details until one has understood

the phenomena under study.

Frenkel’s guidance cited in Fisher, M. E. (1983).
Scaling, universality and renormalization group

theory. In Hahne, F. J., editor, Lecture Notes in

Physics, volume 186, pages 1–139. Springer 2
The Human Visual System

2.1. Introduction

T
he visual system in humans, and in mammals in general, is very complex, so a
substantial amount of research effort in the last decades has been directed at
understanding the various aspects of the system, ranging from the physical

to the biological and psychological processes involved.

After a short description of the eye composition, a somewhat detailed description
of the anatomy and physiology of the human retina is made in the sequel. It serves as
a basis for understanding the different processes occurring in the retina, to provide a
functional evaluation of the retina models, and to give an insight into the challenges
encountered in modeling such a complex and intricate network of neurons. It also
helps to devise methods and simplifications that can be applied for deriving compu-
tational retina models. A summarized description of the visual pathway is given with
a presentation of the principal visual processing centers, ending in the visual cortex.

Finally, some relevant issues related to retinal modeling are discussed. A brief
overview of the basic processing blocks commonly used in retina modeling, as well as
the taxonomy usually employed to classify those models is described. As the retina is
a neural circuit, therefore it starts with a general description of the neuron’s anatomy
and dynamics.

2.2. The Neuron

To have a better understanding of the vision system, and of several phenomena
related to the retinal neural cells’ responses, it is important to have a general overview
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of the neuron anatomy and the mechanisms involved in information encoding and
communication.

2.2.1. Neuron Anatomy

The neuron is the basic unit of information processing and is the building block of
neural circuits, such as the retina and brain visual centers. The neuron is made
up of three basic components, as shown in Fig. 2.1: the cell body, or soma; an
extension, called the axon; and the dendrites. Dendrites look like the branches of
a tree; they receive messages from other cells and communicate it to the soma. A
single neuron can have more than 2000 dendritic branches, establishing connections
between tens of thousands of other cells. Within the cell body (soma) is the nucleus,
which contains the genetic material. The main role of the soma is to process all the
information collected by the dendrites; if the sum of the electrical signals collected
by the dendrites is strong enough, the neuron will fire an action potential. The axon
transmits messages from the cell body to other neurons. The axon looks like a long
tail, and can extend farther than 1 m (the largest axon in humans runs from the base
of the spine to the big toe of the foot), and can be as wide as 1 mm. At its end,
the axon divides into fine branches – the axonal terminals or presynaptic terminals
– that make contacts with neighboring neurons. In many neurons, portions of the
axon are covered by a myelin sheath. Myelin is a fatty substance whose role is to
increase the speed and strength of the signal that travels down the axon, in addition
to protecting the axon from external assaults.

The point of contact between two neurons is called the synapse (see detail in Fig. 2.1).
A synapse is composed of a narrow space, called the synaptic cleft, between the axon
ramification ends of the neuron that transmit a signal, the pre-synaptic neuron, and
the dendrite of another neuron – the post-synaptic neuron. Most pre-synaptic ter-
minals end on the dendrites of the post-synaptic neuron (axodendritic synapse), but
the terminals can also target the cell body (axosomatic), and less frequently, the
beginning or end of the axon of the receiving cell (axoaxonic synapse) (see Fig. 2.1).
Synapses can be also found between neurons and other cells, such as muscle cells and
gland cells, with appropriate receptors.

There are a number of different types of synapses found in the retina that can
be classified into two main categories: chemical synapses and electrical synapses.
Synapses which communicate through a transmitter substance, or neurotransmitter,
are termed chemical synapses, and those in which two cells are electronically cou-
pled together are termed electrical synapses. The specific sites where the neuron
membranes connect in the electrical synapse are termed gap junctions.

A single neuron can receive synapses from a large number of other neural cells
and its response can vary significantly, depending on which source cell (or set of
cells) stimulated it. Moreover, the temporal history of stimulations can change the
synaptic strength. This mechanism, typically referred to as synaptic plasticity, is
an essential process that, in addition to roles in learning, is crucial for the physical
building of the brain during its development and throughout an organism’s life-
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Figure 2.1. Anatomy of a neuron.

time [Dayan and Abbot, 2001; Gerstner and Kistler, 2002].

Besides the nerve cells, or neurons, the nervous system is also composed of other
types of cells, like glial cells that outnumber the neurons. Glial cells are substan-
tially smaller and provide support and protection for neurons. They are active in
surrounding neurons and holding them in place; in supplying nutrients and oxygen
to neurons; in insulating one neuron from another; and in destroying pathogens and
removing dead neurons. Glia also have important developmental roles, such as guid-
ing migration of neurons in early development and producing molecules that modify
the growth of axons and dendrites [Purves et al., 2007].

2.2.2. Neuron Dynamics

When the integration of the signals gathered by the dendrites and delivered to the
cell body surpasses a given threshold, an action potential is generated. An action
potential is an electric pulse that is generated at the axon hillock, where the axon
emerges from the cell body (see Fig. 2.1). This electrical signal travels along the
axon to the axonal terminals and is refreshed along the way to prevent signal decay.
This transmission and signal refreshing involves the movement of charged particles
– namely ions – across the neuron membrane, and terminates with the release of a
chemical substance into the synapse. The synaptically transmitted messages can be
either excitatory or inhibitory.
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Figure 2.2. Propagation of an action potential along a neuron’s axon.
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There are several types of ions involved in the transmission of the action poten-
tial along a neuron’s axon. The propagation of electric signals due to excitatory
stimulation is achieved mainly by means of an exchange of sodium (Na+) and potas-
sium (K+) (positive ions), between the inside and outside of the neuronal membrane.
Other ions involved in the process are chloride (Cl−) and organic ions (A−), such as
amino acids, proteins, and nucleotides, in smaller concentrations. Along the axon,
the neuron possess ionic pumps that move the Na+ ions to the outside of the cell (see
Fig. 2.2a), while the K+ ions are moved inside; however, a small outward leak of K+

ions, larger than the inward leak of Na+ ions, keeps the potential difference between
the inside and the outside negative. It is thus said that the membrane is hyperpolar-
ized. When an action potential is delivered by the soma, the Na+ channel opens in
the axon, as shown in Fig. 2.2b, so that there is a influx of sodium ions into the cell;
this raises the potential inside the cell membrane, making it depolarized. To com-
pensate, the nearby K+ ion channels open, leading to an efflux of K+ ions (Fig. 2.2c),
repolarizing the membrane. Eventually, both channels close (first the sodium, then
the potassium) and the pumps re-establish normal conditions. All this is achieved
in less than 2 ms. Furthermore, as illustrated in Fig. 2.2b, once the Na+ channel
is opened, diffusion waves of Na+ ions are generated; this depolarization wave then
propagates to another nearby sodium channel, slightly raising the potential inside
the cell. As a result, that nearby Na+ channel opens, and the cycle repeats itself.
This process therefore triggers a chain of events that leads to the propagation of the
electric signal down the axon to the axonal terminals.

The ion channels also have a refractory period, which prevents them from re-
opening in a short amount of time. This process is very important because it ensures
that the cycle does not become astable. Without this feature, once the channels were
activated, they would enter a cycle of opening and closing; moreover, this property
guarantees that the action potential always propagates forward.

The speed of action potential propagation is usually directly related to the size of
the axon. Big axons generally have fast transmission speeds as increasing the size of
the axon allows more of the sodium ions that form the internal depolarization wave
to enter and remain inside the axon. To overcome the transmission speed limitations
due to the limited size of the axons, myelin (above mentioned) is wrapped around
many neurons’ axons (see Fig. 2.1). The myelin sheath prevents the dissipation of
the depolarization wave by inhibiting ion leakage, thus speeding up the transmission.

While in an excitatory synapse, the opening of Na+ channels leads to the exci-
tation of the cell and the initiation of an action potential, the inhibitory synapse
works by preventing this initiation. To accomplish this, the pre-synaptic neuron re-
leases a packet of neurotransmitters which activate chloride (Cl−) channels. Once
the channels are opened, the Cl− ions flow into the neuron by diffusion; this lowers
the potential inside the neuron and prevents the initiation of the action potential.
The behavior of neurons is also influenced by other types of ions, such as calcium
(Ca2+) and magnesium (Mg2+) [Gerstner and Kistler, 2002].
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Neural Communication through Chemical Synapses

When the action potential reaches a chemical synapse at the axonal terminal, the pre-
synaptic neuron communicates the information to the next neuron, the post-synaptic
neuron. The process of information communication in the synapse is achieved as fol-
lows: i) the action potential triggers the opening of calcium channels, allowing
for an influx of calcium (Ca2+) ions into the pre-synaptic neuron; ii) the excess of
Ca2+ ions causes the pre-synaptic neuron to release a packet of organic molecules, re-
ferred to as chemical messengers or neurotransmitters, into the synapse cleft, a small
gap between the two neurons. These neurotransmitters are stored in synaptic vesicles
(see Fig. 2.1), and serve as the output signal, translating the neuron’s electrical signal
into a chemical signal; iii) when released by the pre-synaptic neuron, the neurotrans-
mitters traverse the synaptic cleft and bind to special proteins in the post-synaptic
neuron that produce a local electrical signal called the synaptic potential. Unlike
the action potential, the synaptic potential is not propagated; instead, it triggers the
opening of special ion channels - sodium (Na+) for excitatory synapses, or chloride
(Cl−) for inhibitory synapses; iv) these ions then enter the post-synaptic neuron,
generating an electric signal. In an excitatory synapse, this signal propagates to the
post-synaptic neuron body, eventually resulting in the initiation of another action po-
tential; in an inhibitory synapse, the Cl− ions work to prevent the generation of action
potentials by inhibiting excitatory electronic signals. This synaptic communication
can be mediated by different types of neurotransmitters [Gerstner and Kistler, 2002].
In the retina, the neurotransmitter passing through the vertical pathways, which run
from photoreceptors to bipolar cells to ganglion cells, is glutamate, while the hori-
zontal and amacrine cells send signals using various excitatory and inhibitory amino
acids, including catecholamines, peptides and nitric oxide [Kolb, 2003].

The synaptic potential is not stereotyped, like the action potential; instead, its
amplitude depends on the stimulus strength. The potential can be more positive
than the neuron resting potential (depolarizing), enhancing the neuron’s ability to
fire an action potential (rendering them excitatory), or they can be more negative
than the resting potential (hyperpolarizing), making the neuron less likely to fire an
action potential (rendering them inhibitory).

Neural Communication through Electrical Synapses

In an electrical synapse the two neurons are electrically coupled at specific sites of the
membrane surface – the gap junctions. A gap junction consists of several channels
that allow ions, and small molecules, to pass from one cell to the other cell. Each
channel consists of two subchannels, termed connexons, one from each cell. Each
connexon is composed by six protein subunits termed connexin (see Fig. 2.3). Gap
junctions can differ in the number of channels and in the types of connexons that
compose them, however they always have a depolarizing effect.

Signaling by electrical synapses is very fast because the action potential pass di-
rectly from one neuron membrane to the other, through the gap junction, which
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Figure 2.3. Gap junction between two neurons.

allows the direct exchange of ions. The electric current is proportional to the poten-
tial difference between the presynaptic and the postsynaptic membranes.

2.2.3. The Neural Response Function

The neuron output is composed by a discrete sequence of voltage pulses, also called
evoked potentials, or action potentials, and briefly termed by spikes. These are
positioned at time instants {ti}, with i = 1, . . . , n, like represented in Fig. 2.4, and is
called a spike train. The waveform of the evoked potentials has a stereotyped shape
for a given class of neural cells, and is used to classify the ganglion cells [Wandell,
1995]. The waveform in Figure 2.5 corresponds to an evoked potential of a rabbit
OFF-type retinal ganglion cell (RGC).

Because of the stereotypical form of the spikes, and although their time lengths,
amplitudes, and shapes show slight variations, the information carried to the brain
is encoded in the spikes’ temporal occurrence instants. Due to this fact, a spike train
can be represented by a time series of equal amplitude bars, with a bar positioned at
every instant where a spike occurs. Figure 2.6 shows a graphical representation of a
spike train segment from the response of a rabbit transient brisk OFF-type ganglion
cell when excited with a Gaussian random stimulus [Keat et al., 2001].

t1 t2 ti tn−1 tn
t

· · ·
· · ·

· · ·
· · ·

Figure 2.4. Representation of a spike train.
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Figure 2.5. Spike waveform of a ganglion cell from a rabbit’s retina obtained with a
sampling frequency fs = 30 kHz.

A spike train can be represented mathematically by a series of Dirac delta functions
positioned at the time occurrence instants ti like:

ρ(t) =
n∑

i=1

δ(t− ti), (2.1)

where n is the total number of spikes in the train, ρ(t) is the neural response function.
The neural response function disregards the height and shape of the action potentials,
so that all information is contained in the time instants arrivals of the spikes; thus,
the spike train is considered to be a point process [Brenner et al., 2002].

Integrating the neural response function in Eq. (2.1) the number of spikes, n,
present in the recording of a neuron response within a total elapsed time T is obtained
by:

n =

T∫

0

ρ(τ)dτ

=
n∑

i=1

T∫

0

δ(τ − ti)dτ ,

(2.2)
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Figure 2.6. Neural response function of a retinal ganglion cell.
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Figure 2.7. Neural spike trains from a Salamander ON-type retinal ganglion cell (Top)
when driven by the uniform white noise stimulus obtained from sampling a Gaussian
distribution (Bottom), (data from [Keat et al., 2001]).

where the integral in the last term evaluates to one, as a Dirac delta function.

The neural response can be characterized by several other quantities obtained from
the neural function such as the spike-count rate. The spike-count rate, r, is the total
number of spikes, n, in a trial, divided by its total time duration, T :

r =
n

T
=

1

T

T∫

0

ρ(τ)dτ . (2.3)

The spike-count rate is the time average of the neural response over a particular trial,
and does not contains any temporal information about the neural response.

The average neural response function over many experimental trials for the same
stimulus, like the trials displayed in Fig. 2.7, is called the average neural response.
This average, represented by 〈ρ(t)〉, is computed by summing all the individual neural
response functions for each trial and dividing the result by the number of trials M .
If the neural response function for the trial j, where j = 1, . . . , M , is represented by
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(b) ∆t = 100 ms

Figure 2.8. Retinal ganglion cell ON-type firing rate using different time bin widths for
the neuron response.

ρj(t), the average neural response is:

〈ρ(t)〉 =
1

M

M∑

j=1

ρj(t) . (2.4)

If the time instant of a spike occurrence at time ti, with 0 ≤ ti ≤ T , in the trial j, for
j = 1, · · ·M , is represented by tij then the neural response average can be written
as:

〈ρ(t)〉 =
1

M

M∑

j=1

nj∑

i=1

δ(t− tij) , (2.5)

where nj represents the total number of spikes in the trial j, which is usually different
from trial to trial.

A time-dependent firing rate can be obtained by counting spikes over short intervals
of time from a large number of trials where the neuron is repeatedly stimulated with
the same stimulus. The firing rate at time t can be computed by counting the number
of spikes that occur within the time interval [t, t + ∆t] and by dividing the result by
∆t; thus, the firing rate is measured in spikes/s or Hz. The precision of the firing rate
increases by using a small time bin width ∆t; as a result, a higher temporal resolution
can be achieved. If only a single spike train is used with a narrow time bin ∆t, the
firing rate will be either zero or one, and therefore an average over multiple trials
should be made. The time-dependent firing rate is defined as the average number
of spikes over several trials appearing in an interval between the time instants t
and t + ∆t, divided by the interval length ∆t. Figure 2.8 displays the firing rates
calculated from trials of a retinal type ON-type ganglion cell with different time bins.
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The time-dependent firing rate is defined as:

r(t) =
1

M

M∑

j=1

1

∆t

t+∆t∫

t

ρj(τ)dτ

=
1

∆t

t+∆t∫

t

〈ρ(τ)〉dτ ,

(2.6)

where the integral in the first equality computes the number of spikes between the
times t and t + ∆t in the jth trial, while the integral in the second equality captures
the number of spikes in the time range between t to t + ∆t of the neural response
average.

Formally, the time interval length of Eq. (2.6) can be made to go to zero. Thus,
by taking the limit we have

r(t) = lim
∆t→0

1

∆t

t+∆t∫

t

〈ρ(τ)〉dτ

=
〈

lim
∆t→0

1

∆t

t+∆t∫

t

ρ(τ)dτ
〉

.

(2.7)

Inside the angle brackets in the last expression is the derivative of the integral of
ρ(t). Therefore, the formal definition of the firing rate can be written as:

r(t) = 〈ρ(t)〉 , (2.8)

that states that the firing rate is the average of the neural function over many trials.
Several other quantities can be computed from the neural response. In Appendix B
various other quantities related to the neural response are presented and the way of
calculating them in practice is discussed.

2.3. The Human Visual System

The ancient Greeks thought that it was the light rays emitted by the eyes that touch
the objects, making them visible. This idea was related to the fact that, despite
that objects are far away, they can still be sensed. It was only in the seventeenth
century (1625) that the German Jesuit priest and physicist Christoph Scheiner (1573
– 1650) showed that it is the light entering the eye that produces the image. Since
then, remarkable advances have been made in the knowledge and understanding
of this marvelous sense, although there are still many unanswered questions. The
sections that follow resumes what is currently known about the eye anatomy and
physiology [Wandell, 1995; Rodieck, 1998].
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Figure 2.9. Schematic section of the human eye.

2.3.1. The Eye

From a functional point of view, the eye is an optical system that gathers light
and focuses it on its rear surface where the retina lies. Fig. 2.9 shows a schematic
representation of the horizontal cross section of the human eye with the different
parts labeled.

Looking into someone’s eyes, it is possible to immediately identify several compo-
nents. One is the pupil, an aperture in the center of the eye that appears dark due to
the light absorbing pigments of the retina on the back. Around the pupil is the iris,
a colored muscle that confers the color to the eyes, but whose color does not have
any functional relevance. The iris muscle controls the size of the pupil according to
the light conditions. The pupil diameter can range from 1.5 mm to 8 mm, becoming
smaller in brighter light conditions.

Covering the external surface of the eye is the cornea. The cornea is a tough
transparent membrane that acts as the first lens encountered by the light entering
the eye. It has a round surface, with a refraction index of 1.38, and acts as a convex
lens that is primarily responsible for bending light into the eye. Around the iris is an
external white surface, called the sclera, that makes part of the wall that supports
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the eyeball and is continuous with the dura mater – the tough membrane that covers
the central nervous system.

Partially covered, and behind the iris, is the lens, a transparent tissue consisting
of many fibers, which are also called crystalline. The crystalline lens has a bi-convex
shape with a refraction index of 1.4, which is higher than any other eye component.
However, because it is surrounded by media with a similar refraction index, light
bends less as it passes through the lens than it does when passing through the cornea.
It is the lens, in conjunction with the cornea, that allows the formation and focus of a
sharp image on the back of the eye. The lens is connected to the ciliary body by several
ligaments, called zonule fibers, depicted in Fig. 2.9. The contraction or relaxation of
the zonule fibers, through the action of the ciliary body muscle, changes the shape of
the lens and mediates the constant focusing of the image on the retina. This process
is called accommodation and constitutes the zonule fibers’ most important function.

In the eyeball, there are three chambers of fluid. Between the cornea and the
iris lies the anterior chamber , and between the iris and the zonule fibers lies the
posterior chamber . These two chambers are filled with the aqueous humour . A third
chamber, called the vitreous chamber , is located behind the lens and is filled with
the vitreous humour that occupies the entire space between the lens and the retina,
representing two-thirds of the eye’s volume. The vitreous humour is a viscous fluid
whose refraction index is identical to the eye’s optical system, so that it does not
bend light. The vitreous chamber is also responsible for the round shape of the eye.

Behind the vitreous humour is the retina, which covers 65% of the inside eyeball
and is one of the most important components of the eye. This is where the image is
focused and transduced to neural signals, to be posteriorly conducted to the brain
by the optic nerve. The previously presented components of the eye have the unique
function of focusing the image on the retina, playing a role similar to that of an optical
system, while neural processing actually begins at the retina. Figure 2.9 displays the
path followed by a light ray entering the eye’s optics and hitting the retina, showing
that the visual axis differs from the optical axis. The visual axis ends in a special
point in the retina, termed fovea, that is the point of highest visual acuity and is
always directed at the object that one is paying attention to at the moment.

The eyeballs are held in their respective optical cavity by various ligaments, muscles
and fascial expansions. Figure 2.9 shows the rectus tendon which is connected to
one of the two pairs of muscles running to the skull called the rectus muscles. An
additional pair of muscles, called oblique muscles, are responsible for rotating the
eyeball in the orbit.

2.3.2. The Retina

The retina can be seen as an extension of the brain, it is responsible for transducing
light into electrical nervous pulses, and for the early processing stages of neural
visual signals. To understand the retina functioning it is essential first to know its
anatomy [Dowling, 1987; Kolb, 2003].

The retina is a circular disc with a diameter of approximately 4.2 mm and a
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Figure 2.10. Light micrograph of a vertical section through the retina [Kolb et al., 2012].

thickness of 0.5 mm. It is composed of several layers of neurons that can be easily
distinguished in a micrograph, like the one reproduced in Fig. 2.10. The darker
layers, called the nuclear layers, contain the neuron cell bodies, while the pale layers,
called the plexiform layers, contain their dendrites and axons. Figure 2.11 portrays a
simplified schematic of the organization human retina, with the neurons composing
each layer labeled.

The human retina has two types of photoreceptors: rods and cones. The rods are
long and thin, and are about 120 million in number (about 94.5% of all photore-
ceptors). The rods are very sensitive to light (capable of perceiving even a single
photon), and enable scotopic vision – the visual response at lower orders of illu-
minance magnitude. The cones are less numerous than the rods (totaling about 7
million), have a shorter and thicker shape, and are less sensitive to light. The cones
provide the eye’s photopic vision – the visual response at 5 to 6 orders of illuminance
magnitude – and are responsible for color perception. There are three different types
of cones in the human retina, the blue, green and red cones, corresponding to the vis-
ible light wavelength to which they are most sensitive. Figure 2.12 shows the spectral
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responses of the different types of photoreceptors present in the human retina. At
intermediate levels of illuminance, both rods and cones are active, enabling mesopic
vision.

The photoreceptors are not distributed uniformly in the retina. While the cones
are almost exclusively concentrated in the fovea, where there are no rods, the rest
of the retina is populated predominantly by rods. Figure 2.13 displays a graphic
with the photoreceptor distribution throughout the retina. Foveal cones are densely
packed hexagonally, as is shown in the photograph of the cross section of the human
fovea in Fig. 2.14a. As distance from the fovea increases, the cones become larger
and are packed less densely, like the photograph of the foveal periphery in Fig. 2.14b
shows; the spaces between cones are filled by rod photoreceptors.

The fovea appears as a small dimple aligned with the visual axis (see Fig. 2.9),
defining the operational center of the retina in bright light. Since in dim light an
object focused on the fovea is not visible, at night we have to look to objects slightly
sideways and is difficult to perceive color. The circular area around the fovea, with
a diameter of approximately 6 mm, is the central retina; this region extends to the
peripheral retina and further extends to the ora serrata, 21 mm from the center of
the optic disc (see Fig. 2.9).

The light has to traverse all retinal layers to be sensed by the photoreceptors,
as shown in Fig. 2.11, because photoreceptors must be in contact with the pigment
epithelium (see Fig. 2.9). The exception to this rule occurs in the fovea, where nerves
are pushed away so that the cones are directly exposed to light. Nevertheless, the
photoreceptors are always in direct contact with the pigment epithelium because the
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Figure 2.12. Spectral sensitivity of the photoreceptors.

pigment-bearing membranes of the photoreceptors have to be in contact with the
epithelial layer, which provides a steady stream of several retinal molecules used to
transduce light, like vitamin A and its aldehydes. These molecules sense light by
changing their conformation in response to photons, and are then recycled back in
the pigment epithelium [Rodieck, 1998].

The bottom layer of the retina in Fig. 2.10 is where the retina ganglion cells lie, and
it is called the ganglion cell layer (GCL). The axons coming from the RGCs converge
to one point where they leave the eye together and run to the brain, forming the
optic nerve that also contains the blood vessels necessary for vascularization of the
retina. This point is also called the blind spot, or optic disk, since there are no light
receptive cells in this region (see Fig. 2.9). The existence of the blind spot is not
perceived, because the blind spot of one eye is compensated by the other eye, and
vice-versa.

The intermediate cell layers, namely the bipolar, horizontal and amacrine cells, are
responsible for processing the electrical stimuli coming from the different photorecep-
tors and enhancing the features relevant for the brain to extract information. These
cells are organized in layers, as shown in the schematic of Fig. 2.11 and in Fig. 2.10,
where the layers are labeled with the corresponding cell types. The photorecep-
tor cells’ bodies are located in the outer nuclear layer (ONL). The inner nuclear
layer (INL) contains the cell bodies of the bipolar, horizontal and amacrine cells. The
outer plexiform layer (OPL) is located between these two neuron layers and contains
the synaptic connections between the photoreceptors, bipolar, and horizontal cells.
The GCL contains the ganglion cells, whose axons link to the brain. Between this
layer and the inner nuclear layer is the inner plexiform layer (IPL), containing sev-
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Figure 2.13. Spatial distribution of photoreceptors along the retina.

eral kinds of synaptic contacts between the ganglion cells and the horizontally and
vertically directed amacrine cells. Despite its complexity, we can obtain a general
overview of the structure of the human retina by considering a simplified organization
such as the one depicted in Fig. 2.11, which is a very basic view of the structure of
the retina. In reality, the connections between the different types of cells are very
intricate, as can be previewed from Fig. 2.10.

The central retina is thicker than the peripheral retina for two main reasons: the
high density of photoreceptors present, mainly cones, and a greater density of cones
connecting second order neurons located in the inner nuclear layer, called cone bipolar
cells. There is also a greater number of ganglion cells in the ganglion cell layer of the
central retina, which implies a greater number of synaptic interactions.

At the middle point of the central retina is the fovea, whose constitution is signif-
icantly different from the central and peripheral retina. In the foveal pit, the neuron
layers are radially displaced and cones are compactly aligned in a hexagonal structure
and exposed directly to light (see Fig. 2.14a). Around the foveal pit is the foveal rim,
or parofovea. It is the thickest zone of the retina due to its six layers of ganglion
cells that connect the central cones to the optic nerve. The foveal area, including
the rim around the parofovea, termed the perifovea, constitutes the macula lutea,
which can be distinguished from the rest of the retina due to its yellow pigmentation
(see Fig. 2.9). Figure 2.15 shows a photograph of the human retina taken with an
ophthalmoscope, in which the fovea and the optic nerve are pointed out, and in which
the blood vessels that vascularize the eye are visible.

Axons from both types of photoreceptors end in the OPL, where they establish
visual pathways with neurons of the subsequent layers. To establish synaptic contacts
with second order neurons, the cones end in a terminal called the pedicle, and the
rods end in a terminal called the spherule, where the connections are established.
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Figure 2.14. Micrograph of the cross section of the fovea and of the foveal periphery: (a)
cones densely packed in fovea, and (b) fovea periphery with bigger cone photoreceptors
interleaved with rods [Curcio et al., 1990].

The cone pedicle ends in approximately 30 extensions associated with 30 triads of
neurons. Each triad is composed of a central element, which is a dendritic terminal
of a bipolar cell, and two lateral elements which are dendritic terminals of horizontal
cells. There are also what are called basal junctions, consisting of different varieties
of bipolar cell dendrites that form synaptic contacts under the surface of the cone
pedicle. The rod spherule has two extensions; each one is associated with four,
second order neurons. This group of four neurons consists of two horizontal cell axon
terminals and two central rod bipolar cell dendrites.

In addition to the pathways between photoreceptors and second order neurons,
there are also contacts between photoreceptors. These contacts are established be-
tween cones and cones and between cones and rods. The cone pedicles have small
extensions from their bases that establish contacts with neighboring pedicles and
spherules. These contacts are called telodendria. A rod can have 3 to 5 telodendrial
contacts from neighboring cones, and cones can have as many as 10 telodendrial con-
tacts to their neighboring rods. The exceptions are the cones that are sensitive to
blue light, also called S-cones, which do not have many telodendria and have a second
order specific kind of bipolar cell. These direct interactions between photoreceptors
appear to degrade spatial resolution and color perception by mixing signals coming

fovea optic
nerve

human retina

Figure 2.15. Photograph of a human retina from an ophthalmoscope [Kolb et al., 2012].
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from different photoreceptors at different locations. One justification for telodendrial
contacts is to allow rods to use neural pathways, devoted to both rods and cones,
that are more rapid than the specific rod pathways.

2.3.3. Retina Operation

Having a grasp of the composition and organization of the retina we will focus now
on its operation [Kolb, 2003; Kolb et al., 2012]. As mentioned earlier, the light must
traverse all retinal layers before reaching the photoreceptors that lay at the back
of the retina. The photoreceptors absorb photons that, by means of a biochemical
reaction, are converted to an electrical signal capable of stimulating the forward
neuronal layers of the retina. Electrical stimuli arrive at the ganglion cell layer and
are sent to the brain through the optic nerve as a sequence of stereotyped voltage
pulses, called action potentials, evoked potentials, spikes. (Figure 2.5 displays a
typical spike waveform from a rabbit RGC).

The optic nerve contains about 106 optic nerve fibers, corresponding to extensions
of the ganglion cell axons. Three different types of horizontal cells, 11 types of
bipolar cells, at least 25 different types of amacrine cells have been morphologically
distinguished and 18 types of morphologically different ganglion cells in the human
retina have been identified [Kolb et al., 2012].

When excited by light, the photoreceptors send a neurotransmitter through the
vertical pathways of the retina. The horizontal and amacrine cells introduce excita-
tory or inhibitory signals in the retina’s neural network, depending on their nature.
A central concept in neuroscience is the notion of receptive field (RF). In the case
of the retina, the RF can be characterized by the area on which light influences the
neural response. Rods and cones react to light directly falling over them, so they
have narrow receptive fields. Figure 2.16 represents a photoreceptor’s receptive field.
The rods can detect dim light and respond to relatively slow changes in luminance,
while cones deal with bright light signals and can detect rapid light fluctuations. The
process of image decomposition begins at the photoreceptor layer and continues in
the first synapses of the visual pathway, existent between the photoreceptors and the
bipolar cells.

Glutamate is a neurotransmitter that enables the transmission of the electrical
neural signals from the photoreceptors through the bipolar cells to the ganglion cells.
This neurotransmitter allows the establishment of electrical conductive channels be-
tween the axon of the presynaptic neuron and the dendrite of the postsynaptic neuron.
Depending on the type of ion flow, the neurotransmitter effect can be excitatory or
inhibitory through depolarization or hyperpolarization of the postsynaptic neuron,
respectively. The horizontal and amacrine cells can send excitatory or inhibitory
signals using several types of substances [Kolb et al., 2012].

While in the dark the rods and cones constantly release neurotransmitter and cease
its releasing when excited by light. For example, when a green cone is in the dark,
its internal potential is at rest, but when is illuminated by green light it becomes
hyperpolarized – the electrical potential of its membrane gets more negative, stopping

33



2. The Human Visual System

Figure 2.16. Graphical representation of the narrow receptive field of a cone.

the neurotransmitter release over the duration of the light flash.

The distinct types of bipolar cells react differently to the neurotransmitter. Some
bipolar cells can re-sensitize their glutamate receptors quickly and react to rapid
changes in the visual signal by firing at a relatively high frequency, while others take
more time to re-sensitize their glutamate receptors, so that they respond relatively
slowly to the same amount of stimulus. On the other hand, some bipolar cells’ re-
ceptors, which possess a hyperpolarizing receptive field, respond to glutamate by
activating an OFF pathway, so that they detect dark images against a lighter back-
ground. Other bipolar cells possess an inhibitory glutamate receptor that prevents
the cell from firing when it receives the neurotransmitter; thus, the glutamate acti-
vates an ON pathway, and the cell detects a light image against a darker background
and possesses a depolarizing receptive field. Figure 2.17 illustrates the different types
of connections between photoreceptors and bipolar cells and the streams of informa-
tion controlled by the glutamate molecule. A single bipolar cell receives input from
a small number of cones and has a medium sized receptive field.

The parallel sets of visual channels of ON-type (detecting light areas on dark
backgrounds) and of OFF-type (detecting dark areas on light backgrounds) are fun-
damental to sight, as vision depends on perceiving the contrast between an object
and its background. Connections between ON-type bipolar cells and ON-type gan-
glion cells and between OFF-type bipolar cells and OFF-type ganglion cells occur in
specific regions of the inner plexiform layer.

If the images were transmitted to the brain via the bipolar and ganglion cells alone,
they would be grainy and blurry. The role of horizontal cells is to define the edges
and enable the perception of fine details in an image. Each horizontal cell receives
its input from several cones, and so its receptive field is large. The receptive field
becomes even broader because the plasma membranes fuse with those of neighboring
horizontal cells at gap junctions (see Fig. 2.18).

A single bipolar cell, with its ON or OFF light response, would carry a fairly blurry
response to its ganglion cell. Horizontal cells add an opponent signal that is spatially
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constructive, giving the bipolar cell what is known as a center surround organization
(see Fig. 2.18). The bipolar center signals can be either ON or OFF, and the hori-
zontal cells add an OFF or ON surround signal through two different mechanisms -
either directly or by sending feedback information to the cone photoreceptors, which
then feed forward again to the adjacent connected bipolar cells. Figure 2.18 illus-
trates the information streams performed by the horizontal cells in conjunction with
the bipolar cells.

Horizontal cells also receive feedback signals, from the inner plexiform layer, that
influence its activity. The result is that horizontal cells modulate the photoreceptors’
signals under different lighting conditions, allowing signaling to become less sensitive
in bright light and more sensitive in dim light, as well as shaping the receptive field
of the bipolar cells. Horizontal cells also make the bipolar cells’ response color-coded
through feedback circuits to cones.

Ganglion cells have a receptive field that is also organized in concentric circles. The
amacrine-cell circuitry in the inner plexiform layer conveys additional information to
the ganglion cells, thus sharpening the boundary between the center and surround
areas in their receptive field even further than the horizontal cell input alone. There
are two main types of ganglion cells in the human retina with ON centers and OFF
centers that form the major output from the retina to the subsequent visual centers
in the brain. The ON-center ganglion cells become active when a spot of light falls
in the center of their receptive field and are inactivated when light falls on the field
periphery. The OFF-center ganglion cells act in the opposite way; their activity
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increases when the periphery of their receptive field is lit and decreases when light
falls on the center of the field. The horizontal cells convey antagonistic surround
signals to bipolar cells, and consequently to the ganglion cells. This kind of processing
sharpens the boundaries of the images. The receptive fields of the ganglion cells can
be modeled as the difference between two Gaussian functions, giving them a so called
Mexican-hat shape. Figure 2.19 presents a sketch of the connections of an ON-type
ganglion cell with its receptive field modeled as a difference between two Gaussian
functions, represented at the bottom of the figure. An OFF-type ganglion cell is
connected to OFF-type bipolar cells, and its receptive field would have a symmetric
shape relative to the one in Fig. 2.19.

In contrast to the rest of the retina, the organization of the retinal cells in the
fovea region contains midget ganglion cells, which possess tiny dendritic trees that are
connected in a one-to-one ratio with midget bipolar cells. The channel from midget
bipolar to midget ganglion cells carries the information from a single cone, thus
relaying a point-to-point image from the fovea to the brain. Each red or green cone
in the central fovea connects to two midget ganglion cells, so at any time each cone
can either transmit a dark-on-light (OFF) signal or a light-on-dark (ON) message.
The message that is sent to the brain carries both spatial and spectral information
at the highest spatial resolution. As a result of being connected to only one cone, the
receptive fields of the midget ganglion cells are much narrower than their counterparts
on the rest of the retina. Blue cones are organized in a different way: they transmit
information through a specific blue bipolar cell to a different type of ganglion cell,
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which can carry both a blue ON and a yellow OFF response.

At the bottom of the inner plexiform layer, just above the ganglion cell layer, are
the amacrine cells. Among the several types of amacrine cells, there is a special
type denominated AII. These cells receive information from the bipolar cells and
transmit information to ganglion cells and bipolar and amacrine cells. They also
provide interconnections between ON and OFF systems of bipolar and ganglion cells.
Another important type of amacrine cell is designated A17. These amacrine cells are
crucial in the pathways starting in rods. Whereas the cones connect directly to
bipolar cells, and these to ganglion cells, the bipolar cells that receive their input
from rods do not synapse directly to the ganglion cells. All bipolar cells connecting
to rods are of the ON-type (see Figure 2.17), and use the AII and A17 amacrine cells
to send signals to the ganglion cells. A single AII amacrine cell can be connected to
as many as 30 rod bipolar cells and can transmit a depolarization signal both to ON
cone bipolar cells and their ON ganglion cells, and to OFF cone bipolar cells and
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their OFF ganglion cells. Therefore, AII amacrine cells make it possible for rods to
use the faster cone pathways. Figure 2.20 illustrates the connections made by an AII
amacrine cell. The A17 amacrine cells also collect the signals from thousands of rod
bipolar cells that are modulated, amplified, and transmitted to AII amacrine cells.
Signal modulation and amplification allow the perception of very weak light signals,
and consequently enable night vision.

There are several other types of amacrine cells that spread horizontally, interacting
with hundreds of bipolar cells and many ganglion cells. They can even connect to
neighboring amacrine cells through gap junctions, increasing their action radius and
the speed with which signals can be transmitted across large areas of the retina.
Another role played by the amacrine cells is in modulating the retinal response for
different illuminance conditions. By liberating several kinds of neurotransmitters,
they inhibit or reinforce the synaptic connections between the neuronal layers in the
retina.

All these singularities of light processing in the retina suggest that a significant part
of the construction of the visual images occurs in the retina. A quantitative analysis of
the responses of each retina cell type permits the evaluation of each cell type’s contri-
bution to the ganglion cell response. The analysis performed in [Meister and Berry II,
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1999] revealed that the photoreceptors, horizontal cells, and bipolar cells produce re-
sponses to light that are basically linear. On the contrary, under the same light stimu-
lus conditions, the amacrine cells showed strong nonlinear distortions, which made it
possible to distinguish between sustained and transient amacrine cells [Victor, 1999].
This kind of experiment allows the functional differences between classes of cells in
the retina to be distinguished and the development of models in a cascading manner,
giving biological meaning to each block in the signal processing pathway.

2.3.4. The Visual Pathway

In addition to the retina, the spatiotemporal processing of the illuminance pattern
gathered by the eye continues to take place all along the visual pathway to the
cerebral cortex. Figure 2.21 shows a schematic view of the visual pathways, from
the retina to the cerebral cortex. A visual prosthesis can potentially be interfaced
with the nervous system in different places along the visual pathway, with inherent
advantages and disadvantages [Warren and Normann, 2003].

All the neurons along the visual pathway possess a receptive field. The receptive
field construct can be expanded to include other characteristics of the visual stim-
uli, such as the shape, size, intensity, color, and location in the visual space, that
drive the neuron to respond optimally. Another important issue is the mapping of
the visual space to the neural space. This mapping is visuotopic, meaning that the
neurons along the visual pathway are arranged such that their receptive fields form
an organized and approximately linear map of the visual space. As a consequence,
objects that are close together in the visual space evoke neural activity in nearby
neurons in the brain. This implies that a rectangle in the visual space will result
in neural activity in a similarly shaped arrangement of neurons in the visual cen-
ters, although this arrangement may be stretched along each axis, rotated, and/or
warped. The external electrical stimulation of this ensemble of neurons would result
in the perception of the outline of a rectangle. Figure 2.21 illustrates the visuotopic
organization of the visual pathway, with points A and B in the retina mapping to
points A and B in the visual cortex.

The visual pathway is a highly parallel signal processing system. This paralleliza-
tion occurs along two principal parallel pathways: the M pathway (M for magno, or
large) and the P pathway (P for parvo, or small). These distinct parallel pathways
begin in the retina and extend through the visual pathway. The M and P pathways
represent different features of an object placed on the visual space, such as where the
object is located and what object it is, respectively [Warren and Normann, 2003].

Optic Nerve and Tract

The optic nerve contains the nerves running from the retina to the optic chiasm – the
location where the nerves coming from the left and right eyes intersect (see Fig. 2.21).
The nerves that go from the optic chiasm to the subcortical tracts compose the optic
tract. The optic nerve has a length of approximately 50 mm and the optic tract is
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Figure 2.21. Schematic cross section of the human brain with the visual pathways
depicted.

about 30 mm in length. It is uniquely composed of the axons of 1.2 × 106 retinal
ganglion cells, and do not include neuron cell bodies. The optic nerve contains the
axons from the nasal visual field and from the temporal to the fovea visual field
of a single eye. In the optic chiasm, the optic nerve axons are reorganized so that
the optic tract almost exclusively contains the axons representing the contralateral
visual hemifield. Besides the retinal ganglion cell axons, the optic nerve also contains
an artery and vein, which irrigate the retina. Figure 2.21 shows a schematic cross
section of the human brain and illustrates in a more detailed manner the different
visual fields and pathways.

The fibers of the optic nerve are also visuotopically organized, with the upper
retina represented along its dorsal side, the central retina along the lateral side,
and nasal visual field along the medial side. However, this visuotopic organization
changes along the nerve [Warren and Normann, 2003]. Because the optic nerve and
the optic tract are extensions of the retinal ganglion cell axons, their receptive fields
have the same structure.

Subcortical structures

The axons coming from the retinal ganglion cells target three subcortical structures:
the superior colliculus, the pretectum, and the LGN (see Fig. 2.21). The superior
colliculus and the pretectum are localized on the top of the midbrain, and are asso-
ciated with the saccadic eye movements and pupillary reflexes, respectively. Neither
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Figure 2.22. LGN cell layers [Kolb et al., 2012].

of these structures is suited for a visual prosthesis implant or bioelectronic vision
system.

The LGN is located on the ventral side of the thalamus, and its neurons are con-
sidered relay neurons: they receive the input from the retinal ganglion cells and pass
it to the cortex. The volume of the LGN is small, 7 × 7 × 2 mm, with six function-
ally independent cells laminae, stacked in a form of a distorted ’U’ (see Fig. 2.22).
Each lamina receives input from only one P or M pathway and from only one of the
contralateral or ipsilateral eyes.

Figure 2.22 displays a microscopic cross section of the LGN, in which the projec-
tions of the small P cells and large M cells from the two eyes to parvocellular and
magnocellular layers of the LGN are indicated. Each eye projects its RGC axons to
alternating layers, as indicated on the right side of the picture shown in Fig. 2.22.

The LGN laminae are visuotopically organized, and the visuotopic maps are reg-
istered between lamina. Half of the neurons of the LGN, representing half of its
area, have receptive fields in the fovea and surrounding region [Warren and Normann,
2003]. Despite its difficult access, the neural organization of the LGN make it eligi-
ble for a neuroprosthesis implant and there is some experiments to demonstrate its
feasibility [Pezaris and Reid, 2007].

Visual Cortex

The visual cortex is the final stage in the visual pathway. Even in the visual cortex,
the M and P pathways continue to follow distinct processing paths. The majority
of the LGN axons run to a cortex region, designated as the primary visual cortex
because it is the first visual processing region at the cortical level, or cortex visual
area 1 (V1), with dimensions within the range of 2500−3200 mm2. This brain region
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is also known as the striate cortex. Visual processing takes place in subsequent areas
of the cortex referred to as 2, 3, 4 and 5 (V2, V3, V4 and V5), reflecting their
hierarchical relationships.

All these areas have a laminar structure containing six layers with a total thickness
of approximately 2 mm from the pia mater (the more external region of the brain)
to the white matter (the internal region of the brain). Processing of the visual
information is performed in an upright manner, with information passing between
neurons in a column from pia mater to white matter, and in an horizontal fashion,
in which information is integrated across a number of columns. Layer 4 in area
V1 is further subdivided into four layers: 4A, 4B, 4Cα and 4Cβ. Layers 4Cα and
4Cβ receive input from the M and P pathways, respectively, and layer 6 in V1 sends
feedback to LGN [Grill-Spector and Malach, 2004].

Every area in the visual cortex is visuotopically organized. The visuotopic maps
are registered between lamina so that all neurons in a column, from pia mater to
white matter, have receptive fields in the same region of visual space. Half of the
neurons in the visual area, representing half of the region size, have receptive fields
in the fovea or surround region. The visual space corresponding to the foveal region
is represented at the posterior part of V1.

The receptive fields in the visual cortex, with the exception of layer 4C of V1, which
has receptive fields identical to the LGN, are more complex than those of previous
centers. They still have subregions of preferred ON-type illuminance, lacking OFF-
type illuminance, but their shape is no longer annular. They are somewhat elongated,
giving preference to visual stimulus with a bar form oriented in a given direction.
The visuotopic organization of the retinal input, preserved through all stages along
the visual pathway, becomes less distinct in the cortical areas. A neuron can be
driven by the contralateral eye, by the ipsilateral eye, or by both eyes. Nevertheless,
nearby neurons tend to prefer the same orientation and receive information from the
same eye. After the V1 area, the organization of the visual pathway becomes more
complex and the optimal visual stimulus becomes less evident.

Only a small fraction of all the stages that exist along the visual pathway are suit-
able for the implantation of a neural interface to the nervous system. The main
issues hindering implantation are related with retinotopic organization and with
surgical access for interface implantation. The place for implanting the prosthe-
sis is also related to the damage present in prior stages of the visual pathway. The
area V1 is the most adequate for implanting a visual prosthesis at the visual cortex
level [Warren and Normann, 2003].

2.4. Conclusions

This chapter provided a general overview of the human visual system with the goal
to provide a perspective of the issues and challenges involved in the development of
bioelectronic prostheses. The human visual system is very complex, involving differ-
ent areas of the nervous system, and comprising several distinct processes. Two main
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references related to the subject treated in this chapter are [Kolb, 2003; Kolb et al.,
2012]. In particular [Kolb et al., 2012] is a major source of information about the
human vision system, with the additional value that it is periodically updated and
further complemented with comprehensive material from different researchers. It con-
tains up-to-date information about the human visual system, that is only superficially
touched on this introductory overview. The review in [Grill-Spector and Malach,
2004] contains relevant information about the organization of the human visual sys-
tem in general, and about the visual cortex in particular, addressing the retinotopic
organization of the visual system. The understanding of retinal vision processes is
far from complete. Every day brings to light additional findings about the vision
sense, where the division between the physiological and psychological phenomena is
sometimes hard to establish [Werblin and Roska, 2007].

Despite this thesis deals mainly with retina models, there are several studies about
the hypothesis to interface visual prosthesis in different structures along the visual
pathway. However, besides prosthesis interface at the retinal and optic nerve level,
the most promissory high level visual structure for an interface is at the brain cortex
level.
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Given how much is now known, it might be fair to

ask, are we finished with the retina, or are there

more surprises on the horizon? ... Given such un-

expected findings, it appears that there may still be

much more to learn about how the retina works.

Kolb, H. (2003). How the retina works. Scientific

American, 91:28–35

3
Neuron and Retina Models

3.1. Introduction

A
major goal in neuroscience is the modeling or neural processing centers. The
modeling of the neural processing centers is a major goal in neuroscience.
Additional knowledge about how the brain and the central nervous system

work is provided thus improving the prediction about the behavior of the nervous
system. In the context of the retina, these models are essential for the design of signal
processing blocks necessary for the development of bioelectronic vision systems. In
the context of other neural processing centers the models are also required for the
development of prosthesis to overcome diverse types of impairments or even to extend
the human natural senses.

In the previous chapter a description of the main biological processes occurring in
the retina that go from the transduction of light into the evoked potentials or spikes,
that are sent to the brain, and from which all visual information is extracted was
provided. This chapter is dedicated to outline several representative spiking neural
mechanisms used in different signal processing modules employed in retina models,
and to present some state of the art retina models belonging to different classes,
both in its continuous and discrete-time forms, providing the necessary steps for its
computational implementation targeting a bioelectronic vision device.

3.2. The Retina Neural Code

A central question in computational neuroscience is how the evoked potentials en-
code information, and the dual problem, given a spike train, how the stimulus that
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originated it can be reconstructed. These two processes are termed coding and de-
coding, respectively, and are intimately related [Rieke et al., 1997]. In this context,
the question is how the visual image is encoded into the spike trains that are sent to
the brain, in a parallel fashion, through the optic nerve?

The establishment of a neural model for the retina involves the implicit answers
to the following questions: "What code is used by the retina to codify visual infor-
mation?" and secondly "How is that code generated?". The answer to the former
question would be like having a dictionary for this neural language, where we search
the translation for a given visual stimuli. The answer to the latter question can be
seen as the construction of the dictionary for this particular neural language - the
retina neural code.

The brain does not interpret directly the light intensity pattern falling on the
retina that composes the image, but instead, it extracts information from the spike
pattern carried by the optic nerve. The brain starts by processing these incoming
spike sequences, and it sends information to motor neurons in the form of another
sequence of spikes. The language of the brain is composed of sequences of spikes: the
brain listens to spikes, uses spikes in its internal processing, and communicates with
the external world using spikes [Rieke et al., 1997].

The neural code is normally understood by neuroscientists from two perspec-
tives: with the rate code perspective, one assumes that the brain encodes informa-
tion only in the mean firing rate of neurons [Bialek et al., 1991; Eggermont, 1998];
whereas the time code perspective considers that the individual spike occurrence
times play a significant role in the encoding of information [Berry II and Meister,
1998; Reinagel and Reid, 2002]. The rate-code perspective is supported by the fact
that the neurons responses can be so variable that the brain can only extract infor-
mation from the mean firing rate. An example of such behavior is the excitation of
the retina by moving bars: while the firing rate of ganglion cell’s responses increases
considerably as the stimuli enters its receptive field, the trial-to-trial variability of
spiking instants can be quite large [Passaglia et al., 2001]. Additionally, even in the
absence of stimuli, the retinal cells still show spontaneous activity. The time-code
perspective states that the output from single neurons is reproducible from trial to
trial [Reinagel and Reid, 2002]. Thus, the precise timing of spikes is important in
the coding process [Reinagel, 2001; Uzzell and Chichilnisky, 2004]. A key factor in
these issues is the temporal precision of the individual action potentials, which carries
important information.

3.2.1. Macroscopic Retinal Response Characteristics

Several interesting approaches have been proposed to modulate various features of
the retinal processing, particularly at the macroscopic level. Some relevant exam-
ples are the general Weber-Fechner law, [Wandell, 1995], which interprets the light
adaptation that occurs in the retina, or the edge detector proposed by Marr, known
as a Laplacian of Gaussian (LoG) [Marr and Hildreth, 1980; Lim, 1990], inspired in
the ability of the retina to devise contours in images. While these models provide
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some insight into the processes occurring in the visual system, they are not able to
mimic the fine details of retinal processing and do not provide a sequence of evoked
potentials, as desired.

The conversion of light into a spike pattern occurring in the retina, has some
distinctive characteristics that deserve to be pointed out. We will focus on the neural
code employed by the ganglion cells of the retina for conveying visual information to
the brain.

A remarkable characteristic of the retina is the amount of information compression
that it performs since the light is collected by 120 millions photoreceptors whereas
the optic nerve has only about 1.25 millions fibers, corresponding to the retinal
ganglion cells’ axons, a relation of about 100:1. Therefore, on average, there are 100
photoreceptors for 1 ganglion cell, although this relation varies systematically along
the retina. Another important feature is that the response of the retina depends
on the temporal characteristics of the stimulus. For stationary stimuli the response
vanishes, as well as above a certain frequency. Only within a given bandwidth does
the retina fire spikes, behaving as a temporal bandpass filter. Moreover, the retina
is not sensitive to the absolute illuminance, but instead is sensitive to its variation:
the contrast.

Regarding the spatial composition of the stimuli, the retina output is directly
related to the notion of receptive field (RF) – its response is maximal if the stimulus
resembles the spatial form of the RF. This raised the existence of different types
of retinal cells with ON or OFF centers, and OFF or ON surrounds, respectively, a
retinal process known as lateral inhibition [Meister and Berry II, 1999].

Another important issue related to modeling is the linearity of the retinal response.
The retina shows a linear correspondence between the input stimulus and the firing
rate for only some ganglion cells and under restricted conditions – the range of vari-
ation of the light intensity must be small relative to its mean and cannot change too
much over time. To model the nonlinearities of the retina response, a processing block
denominated by contrast gain control (CGC) is frequently used [Meister and Berry II,
1999].

The retinal response changes depending on the illumination conditions. A con-
sequence of this phenomenon, known as light adaptation, is that the capacity for
distinguishing two different levels of illuminance depends of the mean illuminance
level. The perceived contrast ∆C depends on the absolute luminance I, following
the Weber-Fechner law [Wandell, 1995] which can be expressed as:

∆C ∝ ∆I

I
, (3.1)

where ∆I is the variation in the luminance intensity. This is an important character-
istic, since the illumination of the natural world changes several orders of magnitude
along the day. Some ganglion cells transmit information about the absolute light
illumination level to control the pupil and eye aperture, and the visual response is
somewhat immune to the mean intensity level, coding only the contrast changes.
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The spatial resolution is also affected by the light intensity conditions. In dim
light conditions, the time response slows down and the ganglion cell integrates the
incoming illuminance over a longer period of time. The receptive field gradually
loses its antagonistic characteristics, reducing the surrounding area. This adaptation
permits vision in dim light conditions, but at the cost of reduced temporal and spatial
resolution. This adjustment of the stimulus-response relationship, dependent of the
mean light level, takes place at different locations along the retina using distinct
mechanisms [Meister and Berry II, 1999].

The retina not only adapts to the mean light intensity level, but also to its variance,
or contrast. This much more finely tuned retinal response, denominated by contrast
adaptation, represents a slow adjustment of the retinal code to the changes of the
statistics of the visual image. The time course of contrast adaptation is different for
a contrast increase compared to a contrast decrease, and it is supposed that contrast
adaptation is not performed by individual photoreceptors, but that it is instead a
collective process.

3.2.2. Time Code or Rate Code

An old discussion, related not only to the retina neural code, but to the nervous
system in general, relates to whether the neural code is a rate code or a time code
[Eggermont, 1998; Nirenberg and Latham, 2003]. The spike trains are so variable
for different trials with the same stimulus, that some scientists claim that the brain
retrieves the information about the stimulus from a spike train through the neuron
firing rate r(t). This firing rate is obtained by averaging the responses from the
fires of many identical ganglion cells [Meister and Berry II, 1999], and composes a
rate code. On the other extreme are the scientists who advocate that the precise
time occurrence of a spike, like the time interval between spikes convey relevant
information about a given stimulus; all the time characteristics associated with the
neural function ρ(t) are important [Victor, 1999] and compose the time code1. This
point of view is reinforced by the fact that analyzing a trial response to a given
stimulus involves discrete events in time, and not a continuous firing, and that each
event is well described by the time of the first spike and the total number of spikes in
the event [Berry II and Meister, 1998; Uzzell and Chichilnisky, 2004]. A somewhat
intermediate view does not consider isolated spikes as the neural code nor the firing
rate, but bunches of spikes, called events, that convey the information, reflected in
the spike events metric [Keat et al., 2001], discussed in Sec. 5.5.

Another question is whether the neural code of the retina can be viewed as an indi-
vidual process, where each individual neuron cell acts independently, or as a popula-
tion process. Putting it another way, whether the firing of a neuron is dependent on
the response of its neighboring neurons, which would imply that correlations between
firing patterns generated by different neurons convey information [Eggermont, 1998].

1The firing rate r(t) and neural function ρ(t) are two distinct ways of characterizing a neuron
response, and are defined in Appendix B.
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For the case of retinal ganglion cells, several studies suggest that the neural coding at
the retinal level is essentially an individual process, in which the population coding is
responsible for carrying only a minor part of the information transmitted, and when
the correlation between spike trains is not taken into account, more than 90% of the
information about the stimulus can be retrieved [Nirenberg et al., 2001].

3.2.3. Classification of Retina Models

As presented in the previous chapter, the retina is organized in several layers by dis-
crete processing units, such as photoreceptors, bipolar and horizontal cells, amacrine
cells, and ganglion cells. Despite this fact, many retina models are developed using a
continuous formalism, bypassing processes such as the discrete-space sampling done
by the photoreceptors mosaic, but providing a mathematical description in a closed
form.

Looking for a taxonomy to classify retina models, one suggestion is to separate
the models into two groups: the functional models and the structural models [Wulf,
2001]. A finer possible classification is to order the neural models in terms of how
detailed the neuron structure is modeled [Herz et al., 2006]. At the top of the scale
are the detailed compartmental models, that describe with detail each dendrite taking
into account is spatial structure, and each neuron interaction, it can be considered a
very detailed structural model. At the bottom of the scale are the black box models.
This type of models ignore the neuron’s biophysical mechanisms, and only map the
input/ouput relation, being equivalent to functional models.

In general, neuron models can also be classified as rate-code or time-code models,
depending on whether the output is the firing rate or the discrete sequence of firing
events, where the time occurrence of each spike is taken into account. In the case of
the retina, the output of a rate-code model is just the mean firing rate of the RGC

given the light stimulus, while in a time-code model its output corresponds to the
spike train relative to the encoding of the gathered image. The time-code models are
also commonly referred also as spiking neuron models, and are typically based on an
spiking mechanism like integrate-and-fire (IF) model, while a rate-code model needs
an additional firing mechanism that receives the firing rate and generates the spikes,
like a Poisson spike generator.

A functional model attempts to mimic the functions of the retina as a black box,
mapping its input into its output. These models describe the spatiotemporal re-
ceptive fields of the ganglion cell by a set of equations. Typically, they involve one
input layer, where light enters, and one output layer, that furnishes the model out-
put; often the input and output layers are seen as the photoreceptor and ganglion
cell layers, respectively, with the other interneurons connections not taken explicitly
into account [Wulf, 2001]. Functional models can be composed of different blocks,
performing different types of processing. A functional model can have only a spatial
block, where the temporal processing of the retina is set aside, or can be comple-
mented by a temporal block that models the temporal processing of the retina. It can
also be composed of only a temporal block, where the spatial processing is set aside.
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A functional model can also be composed of a single spatiotemporal block, where
the separation between the spatial and temporal processing cannot be made. In this
class of models the retina is seen as a black box, and the model tries to resemble its
functioning, disregarding its internal structure, and only the information from the
input stimuli and output response is used to obtain the model.

Within the class of functional models several subclasses can be distinguish . An
evident division is between deterministic and stochastic models. Deterministic mod-
els, normally of the rate-code type, always produce the same output rate-code for a
given input stimulus, where the variability is introduced only at the level of the spike
generation. On the other side, stochastic models try to mimic directly the intrinsic
variability of the retinal response by introducing noise sources into the model’s in-
ternal structure, and may directly produce the spike trains. Amid these, there is the
important class of white noise models. White noise models are obtained by applying
white noise analysis techniques to the retina’s responses.

In the structural models, the cell functional structures are modeled layer by layer,
normally by a set of differential equations [Hennig and Funke, 2001]. Another equiv-
alent approach is to model the neuron in terms of electric components that simulate
the ions’ channels and ions’ currents flowing through the cell membrane [Wulf, 2001].
This class includes models of only a given retinal cell type, and models of an inter-
connected subset of retinal cells, resembling the anatomical structure of the retina.
In a structural retina model each retina cell’s type is modeled individually according
to its layer, and then, by cascading these individual structures, a complete retina
model is obtained. Frequently, the model for an individual cell is based on the
Hodgkin-Huxley model of the neuron [Dayan and Abbot, 2001].

Many retina models are a mixing of these two structural and functional approaches
where some retina structures are modeled individually and then connected to other
blocks of the black box type to provide a complete retina model. An example of this
approach is the pervasive use of the integrate-and-fire spike generation mechanism,
that is based on the neuron dynamics, in many retina models.

There are other characteristics that can be used to classify the models, such as: the
type of mathematical description used for the model (differential equations, discrete
equations), relation grade with the functional anatomy of the retina, and extent of
reproduction of experimental data (e.g. experimental data that cannot be repro-
duced) [Wulf, 2001].

3.2.4. Retina Model’s Assumptions

Generally, neural models rely on the assumption that neurons generate spikes inde-
pendently of each other. In the case of retina ganglion cells, experimental evidence
shows that they fire synchronously, even in darkness or under constant illumination
[Meister et al., 1995; Warland et al., 1997]. However, comparing the stimulus recon-
struction considering independent encoding of the stimulus by the retinal ganglion
cells with the reconstruction taking the correlations into account give equally good
results [Nirenberg and Latham, 1998]. Another study showed that the firing of the
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first spike from a population encoding stimulus accounts for the discrimination of the
stimulus from a population [Fernández et al., 2000].

Another common assumption is that the neuron’s firing probability varies with
time and is exclusively a function of the input stimulus. These assumptions are not
entirely true, as the neurons compose an intricate network with multiple feedforward
and feedback paths, even in the primary neuronal layers of the retina. Moreover,
a neuron cannot fire subsequent spikes with an arbitrarily small interspike interval
because their internal and external ionic charge levels must be recovered in order
to be able to fire again, which leads to the concepts of absolute and partial refrac-
tory periods [Berry II and Meister, 1998]. Several models take these phenomena into
account by modifying their structure temporally.

A complete model of the retina attempts to map the incident light pattern on the
photoreceptors’ layer to the spike train that comes out from the ganglion cells’ layer.
This light pattern, focused on the retina by the eye’s optical system, can be generally
described as a function of three variables, corresponding to: i) the bi-dimensional
space vector, r = [x y]T , ii) as a function of time, t, that models the variation of
environment components, by itself or due to the eyes’ movements, and iii) the light
wavelength, λ, since the retina has different sensibilities according to the wavelength.
The third spatial dimension, depth, that provides the 3D perception, is perceived by
the brain through the angular difference between the two-dimensional images gath-
ered individually by each eye. Hence, the visual stimulus signal can be described
mathematically by the function s(r, t, λ). Normally, retina models consider the stim-
ulus only as a function of space and time, so that its dependence on wavelength is
deferred, or treated separately for each given wavelength and photoreceptor type.
The light intensity patterns can also be continuous or discrete, both in space and/or
in time (further details are given in Appendix B).

Although the surrounding visual stimulus are spatiotemporal, the retina response
is frequently only modeled in time, and even in the spatiotemporal models it is
common to consider the spatial and the temporal processing separable, and therefore
are handled independently [Wandell, 1995].

In the following sections, it will be given representative examples of retina models
and processing blocks from each model’s classes that have been thoroughly used and
investigated.

3.3. Structural Models Processing Blocks

The class of structural neural models is broad. Nevertheless, the different struc-
tural models are further adaptations of the seminal Hodgkin-Huxley model. The
majority of the models derived from the Hodgkin-Huxley (HH) model go in the direc-
tion of reducing its complexity, like the FitzHugh-Nagumo model [FitzHugh, 1961;
Nagumo et al., 1962; Gerstner and Kistler, 2002], however a few models correspond
to the inclusion of more terms in the HH model’s equations resulting in extremely
complex models, difficult to analyze and to provide further insights into the neuron
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dynamics. On the other extreme is the Hopfield neuron model, which is a binary
neuron model whose output is -1 or 1 depending on the linear combination of its in-
put synapses, which are also -1 or 1. The Hopfield neuron model is used particularly
in learning rules in associative memory [Dayan and Abbot, 2001], and are the basis
of Hopfield’s artificial neural networks.

A set of neuron models with wide application in the modeling of different neural
processing centers, including the retina’s neuron cells, are the IF models [Reich et al.,
1997; Gestri et al., 1980; Hérault and Durette, 2007]. These models are based on the
characteristics of the neuronal membrane, whose properties are modeled as elec-
trical components, being a simplification of the Hodgkin-Huxley nonlinear set of
differential equations [Gerstner and Kistler, 2002]. Despite being around for a long
time, [Hodgkin and Huxley, 1952; Brunel and van Mark C. W. Rossum, 2008], they
still are the state of the art neuron models [Kistler et al., 1997; Jolivet et al., 2004;
Burkitt, 2006; Mihalaş and Niebur, 2009].

The article by Izhikevich [2004] provides a review of 20 different prominent spiking
features, like different types of bursting, and classifies the most common spiking mod-
els according to their ability to display such features, and according to the number
of floating point operations involved. Remarkably, the HH model is able to model all
features observed in the neural response, however its computational complexity lead
to the development of more simple spiking models.

3.3.1. The Hodgkin-Huxley Neuron Model

The Hodgkin-Huxley model was developed with the aim to describe the flow of elec-
tric current through the surface membrane of the giant nerve fibre of the squid
[Hodgkin and Huxley, 1952]. Fortunately nature provided the squid with a giant
axon, up to 1 mm in diameter, amenable to be studied and analyzed even with the
electronic devices available in the mid XX century. Additionally, comparing to other
excitable nerve membrane, the squid axon was an ideal model system. It is a sim-
ple neuron, with essentially only two types of voltage-dependent conductances, and
presented a suitably generic and tractable problem whose solution raised new and
powerful techniques and the discovery of fundamental concepts [Nelson and Rinzel,
1995]. The giant axon extends from the head to the tail of the squid, and it innervates
the squid’s mantle muscle used to propel the squid through the water (see Fig. 3.1).
The axon can be up to 1 mm in diameter, 100 to 1000 times larger than a mammalian
axon, visible with naked eye.

By performing several experiments, Hodgkin and Huxley observed that the axon
membrane potential Vm was related to the influx and efflux of ions through the axon’s
membrane of the giant squid ganglion neuron, and identified that these currents are
due mainly to Na+ and K− ions flux. By manipulating experimentally the ionic
concentrations in the axon they were able to find the contributions of the different
ionic conductances to the establishment and evolution of the membrane potential.
The HH model for the neuron membrane is represented in Fig. 3.2.
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Soma

Axon

Figure 3.1. The squid giant neuron (from [Randall et al., 2002])

.

The balance of charge in the electrical circuit of Fig. 3.2 is described by the differ-
ential equation:

Cm
dVm(t)

dt
+ Iion(t) = Is(t) (3.2)

where Cm is the membrane capacitance, Vm is the intracellular potential relatively
to the outside, and Iion is the ionic current. The current Is represents several types
of external currents, like the synaptic current (Isyn), and/or the current injected into
the neuron directly by an intracellular electrode (Iinj) (see Fig. B.4), and can also
represent the current directly generated by a (visual) stimulus (Istim), each per unit
area of cell membrane.

The current flow across the membrane has two major components. One associated
with the charging of the membrane capacity Cm, and another major component is due
to flux of ions across the membrane. The ionic current can be subdivided into current
carried by sodium and potassium ions, INa and IK, and a small leakage current IL

made up by the flux of chloride Cl− and other minor ions types, such that

Iion = INa + IK + IL. (3.3)

The ionic permeability of the membrane is expressed in terms of the ionic conduc-
tances gNa, gK and ḡL. Each ionic current is given by a conductance times the
membrane potencial, Vm, minus its respective reversal potential (Nernst equilibrium
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Figure 3.2. The Hodgkin-Huxley model of a neuron’s membrane. The resistances
RNa = 1/gNa and RK = 1/gK vary with time and with the membrane potential, while
RL = ḡL and other components are constant.

.

potential). The individual ionic currents are given by:

INa = gNa(Vm −ENa), (3.4)

IK = gK(Vm − EK), (3.5)

IL = gL(Vm −EL). (3.6)

The conductance associated with each ionic current is a function of the membrane
potential which can be seen as a result of the combining effects of a large number
of microscopic ion channels embedded in the neuron’s membrane that can be on the
permissive or non-permissive state. When the physical gates of the ion channels are
open ions can cross the membrane, while in the non-permissive state the channels
are closed preventing the ions from crossing the membrane.

The conductances gi in Eq. (3.4)-Eq. (3.6) depend if the states of the respective
gates are on the permissive or non-permissive state. Hodgkin and Huxley modeled
the ionic conductances using three types of empirical gating variables: m, h and
n; and established empirically that the membrane conductance for each ion type
depends on the gating variables as:

gNa = ḡNam
3h, (3.7)

gK = ḡKn4, (3.8)

gL = ḡL, (3.9)

such that the ionic current is

Iion =
∑

k

gk(Vm −Ek)

= ḡNam
3h(Vm −ENa) + ḡKn4(Vm −EK) + ḡL(Vm − EL),

(3.10)
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where m and h are the sodium gates, and n is the potassium gate. The conductances
ḡNa, ḡK and ḡL are the maximum values for the conductances for each ion type given
in Table 3.1. The overall HH model becomes:

Cm
dVm(t)

dt
= −ḡNam3h(Vm(t)− ENa)− ḡKn4(Vm(t)− EK)− ḡL(Vm(t)− EL) + Is(t).

(3.11)
The gating variables m, h, and n can be on the permissive (conducting) or non-
permissive (non-conducting) state according to the time differential equations:

dm

dt
= αm(V )(1−m)− βm(V )m, (3.12)

dn

dt
= αn(V )(1− n)− βn(V )n, (3.13)

dh

dt
= αh(V )(1− h)− βh(V )h. (3.14)

The values of m, h and n take values between 0 and 1 and give the fraction of
gates for each ion type that are on the permissive state. Although m, h and n do
not depend directly on the membrane potencial, the six rate constants αi and βi

in Eq. (3.12)–Eq. (3.13) depend on the membrane voltage. By adjusting a curve to
the data of the giant axon of the squid, Hodgkin and Huxley found the empirical
functions for αi and βi as functions of the membrane potential. The rate constants
per time (in ms) depend on the membrane potential (in mV) as:

αn(V ) = 0.01(10− V )
[
exp

(
10− V

10

)
− 1

]−1

(3.15)

βn(V ) = 0.125 exp
(−V

80

)
(3.16)

αm(V ) = 0.1(25− V )
[
exp

(
25− V

10

)
− 1

]−1

(3.17)

βm(V ) = 4 exp
(−V

18

)
(3.18)

αh(V ) = 0.07 exp
(−V

20

)
(3.19)

βh(V ) =
[
exp

(
30− V

10

)
+ 1

]−1

. (3.20)

Keeping the membrane voltage Vm constant (clamped at a fixed value V in the
physiological jargon) the fraction of gates in the permissive state will eventually
reach a steady-state value: dp/dt = 0, p ∈ {m, h, n} as t→∞, given by:

p∞(V ) =
αp(V )

αp(V ) + βp(V )
p ∈ {m, n, h}. (3.21)

By changing the membrane voltage from Vm = V0 to Vm = V the rate constants
change instantly according to Eq. (3.15)-Eq. (3.20), but the gating variables m, h, and
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Figure 3.3. Hodgkin-Huxley steady-state m, h, n values (a) and decay time constants
model’s responses for a constant input stimulus current (b).

n change according to Eq. (3.12)- Eq. (3.14). The solution of Eq. (3.12)- Eq. (3.14)
when the membrane voltage changes from Vm = V0, at t = 0, where the stationary
value for p, for p ∈ m, n, h, is p∞(V0) = αp(V0)/[αp(V0) + βp(V0)], to Vm = V is given
by:

p(t) = p∞(V )− [p∞(V )− p∞(V0)] e−t/τp , p ∈ {m, h, n} (3.22)

where the decay time constants are given by:

τp(V ) =
1

αp(V ) + βp(V )
, (3.23)

and p∞(V ) = αp(V )/[α∞(V ) + β∞(V )] is the stationary value for gating variable
p ∈ {m, h, n}. The differential equations in Eq. (3.12)-Eq. (3.13) can be written as:

dp

dt
= − 1

τp(V )
[p− p∞(V )] p ∈ m, h, n (3.24)

indicating that p approaches the value p∞(V ) with a time constant τp(V ). Figure 3.3a
displays the steady-state values for m, h and n using Eq. (3.21) and Eq. (3.15)–
Eq. (3.19), and Fig. 3.3b displays the gating time-constants.

To obtain a better insight on the dynamics of the HH model the equations Eq. (3.11)
and Eq. (3.15)–Eq. (3.15) can be integrated numerically, using the parameters ob-
tained by Hodgkin and Huxley for the squid axon given in Table 3.1. By injecting a
short external current pulse with the form: Is = Imax[H(t− t0)−H(t− t1)] with suffi-
cient amplitude and time duration we can make the neuron to fire a spike. Figure 3.4
displays the waveform of an action potential, with an amplitude around 100mV, gen-
erated by the HH model for an input pulse of current with Imax = 8µA/cm2 with
t1−t0 = 1 ms located at time t0 = 2 ms. In the action potential the spike itself can be
identified, corresponding to the positive peak, followed by a refractory period where
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Figure 3.4. Action potential waveform generated by the HH model for an external current
impulse with 8µA/cm2 of amplitude and duration of 1 ms ( – impulse current onset) for
a resting potential Er = 0mV.

the action potential goes below the resting potential (Er = 0V), where the neuron
is unable to fire again, until the ion levels are recovered and the neuron membrane
returns to the resting potential.

If the amplitude of the input current pulse is lower than a given value at around
Iθ = 6.9µA/cm2 the neuron membrane does not reach the threshold potential Vθ and
the neuron does not fire a spike. Figure 3.5 shows the waveform of a subthreshold
action potential. The membrane potential for a the subthreshold potential stays
below Vm = 10mV.

For a constant input current Is = Imax H(t − t0) the HH model fires spikes at
a constant rate. Figure 3.5 displays a spike train generated by the HH model for
Is = 7 H(t − 2 [ms])[µ A/cm2]. For a more intense stimulus (external current) the
frequency of the spike train increases. The firing frequency raises more slowly as

Parameter Value
ENa 115 mV
EK -12 mV
EL 10.6 mV
Cm 1.0 µF/cm2

ḡNa 120 mS/cm2

ḡK 36 mS/cm2

ḡL 0.3 mS/cm2

Table 3.1. Hodgkin-Huxley model parameters
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Figure 3.5. Subthreshold action potential waveform generated by the HH model using
an external current impulse with 6.9µA of amplitude and duration of 1 ms.

the input current amplitude increases, as depicted in Fig. 3.6b. The difficulty of the
neuron to generate subsequent action potentials, even for a strong stimulus current,
is due firstly to the fact that the membrane is hyperpolarized after a spike and the
voltage needs more time to raise. Secondly, after the firing of a spike a large number
of ionic channels are open and the resistance of the membrane is reduced, unlike at
resting potential. Therefore, the depolarizing effect of the external current is smaller
after an action potential. These effects account for the refractory behavior of every
neuron.

The HH model mimics the neuron behavior in some important aspects. It re-
produces accurately the time course of the action potential, describes naturally
the refractory behavior of the neural system due to the slow recovery of sodium
and potassium conductance after an action potential, and integrates the incoming
synaptic current capacitively, essential characteristics of a neuron model dynamics
[Abbott and Kepler, 1990; Izhikevich, 2004].

Extension of the Hodgkin-Huxley Model to Other Types of Neurons

The HH model describes accurately the dynamics of the squid giant axon whose
membrane potential is mainly regulated by sodium and potassium ions channels.
The membrane potential of the squid giant axon is controlled by an influx of sodium
ions, that depolarize the membrane and raises an action potential, followed by an
efflux of potassium ions that hyperpolarize the membrane again. Figure 3.7 illustrates
the flow of sodium and potassium ions along the action potential. Nowadays, the
accepted resting potential is -65 mV so that the equations Eq. (3.15)–Eq. (3.19) must
be shifted, like the reversal potentials of Table 3.1 [Abbott and Kepler, 1990].
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(a) HH spike train.
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Figure 3.6. (a) Spike train generated by the Hodgkin-Huxley model in response to a step
current input Is = 7 H(t) µA/cm2, and (b) firing rate produced by the Hodgkin-Huxley
model in response to a step current input Is = I0 H(t).

For other organisms, and other different types of neurons, the electric regulation of
the membrane properties follows the mechanisms disclosed by Hodgkin and Huxley,
however other types of ions join the sodium and potassium ions to model the neuron
electrophysiological properties, including "persisting" sodium channels and more than
one type of potassium channels, with various subdivisions.

The neuron membrane potential follows the equation Eq. (3.2), however the ionic
current, described in the HH model by (3.10), is generalized to

Iion =
∑

k

Ik, (3.25)

where each ionic current Ik is modeled by

Ik = ḡkmpkhqkh(Vm −Ek), (3.26)

where ḡk is the maximum nominal conductance of the ion channel k, Ek is the
reversal potential, and m and h are the activation and inactivation variables. The
parameters pk and qk depend on the ion type and take the values pNa = 3, qNa = 1
for sodium channels, and pK = 4, qK = 0 for potassium channels in the HH model.
The HH model can even be further extended to include other ion channels that do
not follow Eq. (3.25), like calcium channels [Gerstner and Kistler, 2002].

Despite its fidelity in describing the dynamics of the neuron’s membrane potential,
the HH model is computationally heavy [Izhikevich, 2004], and several simplification
models are used that resembles the HH model.

3.3.2. The Integrate and Fire Model

The integrate-and-fire model can be seen as a simplification of the HH model. The
behavior of the neuron was described in terms of its electrical capacitance and re-
sistance properties earlier than the HH model [Brunel and van Mark C. W. Rossum,
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Figure 3.7. Gating dynamics across the generation of the neuron action potential.

2008], however the IF model was introduced later [Brunel and van Rossum, 2007].
It is a widespread model used for the modeling of many different types of neurons,
including the modeling of the retina [Hérault and Durette, 2007] and other visual
centers [Casti et al., 2008].

The most simple form for the IF model considers that the ionic current term is
zero in Eq. (3.2), so that there is no leak current. This model was first analyzed
in [Gerstein and Mandelbrot, 1964]. The subthreshold dynamics of the neuron is
modeled by considering that it just integrates the input current. The firing mech-
anism is modeled considering that a spike is fired whenever the membrane voltage,
Vm(t), surpasses a threshold voltage, Vθ, from below, and whenever a spike is fired
the membrane potential is set to its reset value, Vreset. The general circuit for the
(leaky) integrate-and-fire model is depicted in Fig. 3.8 where Er is the rest reverse
potential. The resting potential of the membrane takes values between -70mV to
-65mV, and the threshold potential takes values around -55mV to -50mV.

The non leaky integrate-and-fire model considers that the neuronal membrane be-
haves like an ideal capacitor that is charged by the input stimulus current until it
reaches a limit value, Vθ, and discharges to a reset value, Vreset. This behavior is
equivalent to considering a very high membrane resistance (Rm → ∞) in Fig. 3.8,
which is equivalent to an open circuit, and by regarding the switch internal resis-
tance as very small (Rint → 0), which is equivalent to a short circuit. The relation
between the voltage, Vm(t), across the neuron’s membrane capacity, Cm, and the
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Figure 3.8. The integrate-and-fire (I&F) model.

input stimulus current, Is(t), is given by the simple differential equation:

Cm
dVm(t)

dt
= Is(t) . (3.27)

Equation (3.27) states that the input current Is(t) is integrated to yield the membrane
voltage Vm(t). Whenever Vm(t), crosses the threshold potential Vθ a spike is fired
and the switch is closed in Fig. 3.8, resetting the membrane potential to the reset
value, Vreset.

The non leaky integrate-and-fire model is characterized by possessing an infinite
memory, so that even a very small current applied for a sufficiently long period will
eventually trigger a spike, and a constant firing rate is produced for every nonzero
constant input current.

The membrane potential, Vm(t), can be obtained by integrating the differential
equation in Eq. (3.27) between the time instants ti, and t, which gives

Vm(t) = Vm(ti) +
1

Cm

t∫

ti

Is(t)dt, ti ≤ t < ti+1 . (3.28)

If it is stated that the neuron fired a spike at the time instant ti, its membrane is
at the reset potential for t = ti, Vm(ti) = Vreset, from Eq. (3.28), it follows that the
membrane potential is given by

Vm(t) = Vreset +
1

Cm

t∫

ti

Is(t)dt, ti ≤ t < ti+1 , (3.29)

between two successive spikes. Equation (3.29) represents the membrane potential
excursion for ti ≤ t < ti+1, where ti+1 is the time instant of the next generated spike
after the spike at ti.
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Figure 3.9. Integrate-and-fire model responses for a constant input stimulus current.
Top: Membrane potential. Bottom Generated spike sequence. (a) without refractory
period (b) and with a refractory period. (Is = 5 H(t − 2 [ms]) µA, Cm = 1 µF, and
Tref = 5 ms; (Vreset = −65 mV, Vθ − Vreset = 15 mV)).

For a constant input current, Is(t) = Is, from Eq. (3.29), the membrane potential
is given by

Vm(t) = Vreset +
1

Cm

Is(ti+1 − ti), ti ≤ t ≤ ti+1 . (3.30)

This expression is valid between the time instant that the neuron fired a spike, t = ti,
until the firing of the next spike, t = ti+1, when the membrane is set to the reset
potential and its voltage follows the expression of Eq. (3.30) once again. Since a
neuron fires a spike whenever Vm(t) surpasses Vθ from below, the time between two
consecutive spikes, Tisi, can be obtained from Eq. (3.30) by knowing that Vm(ti+1) =
Vθ, which gives

Tisi = ti+1 − ti = Cm
Vθ − Vreset

Is
. (3.31)

From the time between spikes, the firing rate, r = 1/Tisi, becomes

r =
1

Cm

Is

Vθ − Vreset

, (3.32)

which is constant since the time between spikes is also constant. Figure 3.9 displays
the time evolution of the membrane voltage for a constant input current, and displays
the corresponding spike sequence generated by the model. By adjusting the threshold
potential to Vθ − Vreset, the reset potential in Fig. 3.8 can be set to zero (Vreset = 0).

Equation (3.32) states that the neuron can fire at an arbitrarily high frequency
for a high input stimulus current, Is. However, in real neurons this situation cannot
occur due to the dynamics of the ion channels across the membrane, which introduces
a refractory period after every firing. A neuron that has fired a spike is unable to
produce another for a period of time Tref , regardless of the strength of the stimulus.
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After this dead time, in the absence of relative refractoriness, its firing ability returns
immediately to its prior steady state. The integrate-and-fire model can be extended
to take into account the refractory period by stating that after a fire, the neuron is
inactive during a given time Tref 6= 0, and only after this period it will be able to fire
again. Referring to Fig. 3.8, the refractory period can be modeled by stating that
the switch is closed during a time equal to Tref , and only after this period it is open
again and the capacitor can start charging to fire a new spike (Rm → ∞, Rint → 0
for the non leaky IF model).

In the case of a constant input stimulus current, taking into account the refractory
period Tref , the time between two consecutive spikes is

Tisi = Tref +
CmVθ

Is
, (3.33)

which gives to the firing rate:

r =
Is

CmVθ + TrefIs

. (3.34)

From Eq. (3.34), we observe that for high stimuli currents (meaning that the neuron
is heavily excited) the maximum firing rate is

rmax = lim
Is→∞

Is

CmVθ + TrefIs
=

1

Tref
, (3.35)

which is limited by Tref . Figure 3.9b displays the time evolution of the membrane
voltage for the integrate-and-fire model considering a refractory period after the firing
of each spike.

3.3.3. The Leaky Integrate-and-Fire Model

The leaky integrate-and-fire (LIF) model is closer to the HH model. It assumes that
the ionic conductances are constant, so that the membrane conductance is only mod-
eled by a passive leakage term: Iion = (Vm(t) − Er)/Rm. The assumption that the
conductances are constant is a good approximation for small fluctuations of the mem-
brane potential around its resting potential. The neuron models of the IF type only
model the subthreshold dynamics of the membrane potential. Relatively to the sim-
ple IF model, the LIF model takes into account the fact that the neuron’s memory is
finite by introducing a leakage term so that past input stimuli events are discarded
as time goes by.

The leakage term models the current drain through the cell’s membrane, and is
included in the differential equation Eq. (3.27), thus turning into:

Cm
dVm(t)

dt
= −Vm(t)− Er

Rm

+ Is(t) (3.36)

which is similar to the HH model. A single current, similar to the leak current Ileak(t)
in the HH model, is maintained proportional to the membrane voltage, through the

63



3. Neuron and Retina Models

membrane resistance Rm following Ohm’s law. The leaky integrate-and-fire model is
represented by the electric circuit in Fig. 3.8, where the resistance Rm is connected in
parallel with the membrane capacity Cm. Frequently the rest potential is considered
to be zero: Er = 0 V. The conductance 1/Rm encompasses the different ionic and
leak conductances of the membrane that are assumed to be constant and independent
of the membrane potential.

By introducing the time constant τm = RmCm, the differential equation for the
leaky integrate-and-fire model takes the form:

τm
dVm(t)

dt
+ Vm(t)− Er = RmIs(t) , (3.37)

where the time constant τm characterizes the membrane dynamics. If the input
current compensates the leak current, the membrane potential keeps rising until it
reaches the firing threshold, Vθ and a spike is fired. After the firing of a spike the
membrane potential is set to its reset value, Vreset. In the absence of a stimulus
current the membrane potential decays exponentially to its rest potential, Er.

For the case of a constant input stimulus current, Is must be strictly bigger than
(Vθ − Er)/Rm, so that it can compensate the maximum drain current, Iθ = (Vθ −
Er)/Rm, in order for the neuron to fire. For a constant input current Is(t) = Is,
therefore Eq. (3.37) becomes

Cm
dVm(t)

dt
+

Vm(t)− Er

Rm
= Is . (3.38)

Considering the initial condition that at the time instant ti, the neuron just fired a
spike so that its membrane potential is at the reset value Vm(ti) = Vreset, the solution
of Eq. (3.38) is:

Vm(t) = Er + (Vreset − Er) e−(t−ti)/τm +RmIs

(
1− e−(t−ti)/τm

)
. (3.39)

Knowing that a spike occurs whenever Vm(t) = Vθ, the time of the next spike
occurrence for a constant input current can be obtained from Eq. (3.39). Making
Vm(ti+1) = Vθ in Eq. (3.39) the interspike time interval (ISI) is

∆t = ti+1 − ti = τm ln

(
RmIs − (Vreset − Er)

RmIs − (Vθ − Er)

)
. (3.40)

By introducing an absolute refractory period of Tref , the ISI becomes T = Tref +
(ti+1− ti), so that the firing rate for the leaky integrate-and-fire model for a constant
input current is

r =





0, Is ≤ Iθ[
Tref + τm ln

(
RmIs−(Vreset−Er)

RmIs−(Vθ−Er)

)]−1
, Is > Iθ

. (3.41)

Figure 3.10b displays the model’s membrane potential for the leaky integrate-and-fire
model stimulated by a constant input current with an absolute refractory period.
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Figure 3.10. Leaky integrate-and-fire model’s response for a constant input stimulus
current. Top: Membrane potential. Bottom Generated spike sequence. (a) without
refractory period (b) and with a refractory period. (Is = 5 H(t− 2 ms) µA, Cm = 1 µF,
τm = 10 ms, and Tref = 3 ms; (Er = Vreset = −65 mV, Vθ = −50 mV)).

The general solution of the differential equation for the LIF model can be found
for a general input current stimulus. From the differential equations theory (or the
Laplace transform theory) the solution of Eq. (3.36) is

Vm(t) = Er + (Vreset −Er) e− t−ti
τm H(t− ti) +

1

Cm

t∫

ti

e− t−τ
τm Is(τ)dτ, t ≥ ti . (3.42)

Another convenient way of representing Eq. (3.42) is

Vm(t) = Er + (Vreset − Er) e− (t−ti)

τm +
1

Cm

t−ti∫

0

e−x/τm Is(t− x)dx, t ≥ ti , (3.43)

where the integration variable is the time elapsed since the last spike and Vm(t) is
the membrane potential given that it was occurred a spike at instant ti. By a change
of variables the integral in Eq. (3.42) can be transformed into a convolution integral.
Recurring to the convolution operator Eq. (3.42) can be written as:

Vm(t) = Er + (Vreset − Er) e
−(t−ti)

τm H(t− ti) +
1

Cm

[
e

−(t−ti)

τm H(t− ti)
]
∗ [Is(t + ti) H(t)] .

(3.44)
Equation (3.44) expresses that after the firing of a spike at time ti, the membrane

potential is reset to potential Vreset, that decays exponentially to the rest potential,
Er, to which is added the convolution of the input stimulus current since the firing
of the last spike, that occurred at ti, by the low-pass filter with impulse response:
h(t) = e−t/τm H(t). In many situations the rest potential is made to be zero: Er = 0.
Equation (3.44) is valid from the firing of a spike (time instant ti) until the membrane
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Figure 3.11. Firing rate versus stimulus current for the integrate-and-fire model. (Cm =
1 µF, τm = 10 ms, and Tref = 5 ms, Er = Vreset = −65 mV, Vθ = −50 mV).

potential reaches the threshold value Vθ, when a new spike is fired (time instant ti+1),
and the potential is reset Vm(ti+1) = Vreset and integration restarts. Equation (3.44)
is used repeatedly to obtain the next firing instant by considering the previous time
instant ti+1 as the new ti.

To implement the LIF model in a digital computer the discrete counterpart of the
differential equation in Eq. (3.37) must be obtained. In the discrete implementa-
tion, we want to find the membrane voltage, Vm(t) for the time instants t = nTs,
where n = 0, 1, 2, . . ., and where Ts is the sampling period, corresponding to find
Vm[0], Vm[Ts], Vm[2Ts], . . . , Vm[nTs], Vm[(n + 1)Ts], . . .. The simplest way to obtain
the discrete form of Eq. (3.37) is to approximate the continuous derivative by the
forward discrete approximation, also known as the Euler approximation, given by:

dy(nTs)

dt
=

y[(n + 1)Ts]− y[nTs]

Ts
. (3.45)

This approximation improves as the sampling period Ts tends to zero. Applying this
approximation to the differential equation in Eq. (3.37), and dropping the sampling
period in the arguments, it becomes

τm
Vm[(n + 1)]− Vm[n]

Ts
+ Vm[n]− Er = RmIs[n] , (3.46)

in discrete-time. Applying basic mathematical manipulations Eq. (3.46) becomes:

Vm[n + 1] =
(

1− Ts

τm

)
Vm[n] +

Ts

τm

Er +
Ts

Cm

Is[n] . (3.47)
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3.3. Structural Models Processing Blocks

The membrane potential should be initialized with the rest potential, Vm[0] = Er,
and whenever it crosses the threshold potential, when Vm[n] ≥ Vθ, a spike is fired
and its value is set to the reset potential, Vm[n] = Vreset. Another transforma-
tion from the continuous to discrete domain, frequently used in signal process-
ing [Oppenheim et al., 1999a], is the bilinear transform which gives:

Vm[n + 1] =
2− Ts/τm

2 + Ts/τm
Vm[n] +

2Ts/τm

2 + Ts/τm
Er +

RmTs/τm

Cm(2 + Ts/τm)
[Is[n] + Is[n + 1]] ,

(3.48)
for the difference equation of the LIF model.

3.3.4. Stochastic Integrate-and-Fire Models

In vivo output of a neuron shows a certain degree of irregularity even for stable input
stimuli [Reich et al., 1997]. This behavior is pervasive to all nervous structures to a
lesser or greater extent, as in the cortex structures [Kuriscak et al., 2012] and motion
sensitive neurons [Lewen et al., 1997]. This is a neural phenomena whose origin is
not completely understood and matter of current research [Kuriscak et al., 2012].

Like other neural systems, the response of the retina also shows a certain degree
of variability even when stimulated by the same visual stimulus [Berry et al., 1997;
Berry II and Meister, 1998; Uzzell and Chichilnisky, 2004]. Even for a stationary
external injected current the response of a neuron is not perfectly periodic unlike
predicted by the LIF model and is depicted in Fig. 3.10. This same behavior is
obtained by the HH model as Fig. 3.6b shows. To mimic the variations in the neural
response the LIF model is extended by adding a noise source to its dynamics.

Mainly two methods are used to include a degree of variability in the neuron mod-
els’ response by noise addition: by adding an escape function to the firing thresh-
old [Jolivet and Gerstner, 2004] or by including diffusive noise into the model input
[Plesser and Gerstner, 2000].

Escape Neuron Models

In the escape models the firing threshold is considered to be variable, or noisy, so that
the neuron can fire even when the formal firing threshold Vθ has not been surpassed.
This is modeled by introducing a firing intensity or escape rate which depends on
the actual state of the neuron. In the standard LIF model the neuron fires a spike
whenever Vm reaches the threshold potential Vθ. In the escape model the neuron
can fire with a given probability as a function of the distance between the actual
membrane and the threshold, so that spikes can occur with a probability density
given by

r(t) = f
(
Vm(t)− Vθ

)
, (3.49)

where the probability increases as the distance |Vm(t)−Vθ| gets smaller. In Eq. (3.49)
r(t) is called the stochastic intensity in the context of mathematical theory of point
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processes [Papoulis and Pillai, 2002], and firing rate intensity in the context of neu-
ron models (see Sec. B.2.1). In more general and elaborated models the functional
in Eq. (3.49) can also depend on the variation of the membrane potential and on
time directly, so that Eq. (3.49) becomes

r(t) = f
[
dVm(t)/dt, Vm(t), t

]
. (3.50)

The escape function in Eq. (3.50) has the restriction that f → 0 for Vm → −∞.
For the escape function:

f
[
Vm(t)− Vθ

]
=

{
0, Vm(t) < Vθ

1/∆, Vm(t) ≥ Vθ
, (3.51)

where ∆ is the mean escape rate, the neuron never fires for Vm(t) < Vθ, and for
∆→ 0 it fires immediately whenever Vm(t) crosses the threshold Vθ, resembling the
deterministic LIF model. Other smooth escape functions are [Gerstner and Kistler,
2002]:

f
[
Vm(t)− Vθ

]
=

1

τ0

eβ[Vm(t)−Vθ ], (3.52)

with an exponentially growing escape rate and parameters τ0 and β, that for β →∞
resumes to the noiseless model Eq. (3.51). The escape rate can also be approximated
by a piecewise linear function like:

f
[
Vm(t)− Vθ

]
=

{
0, Vm(t) < Vθ

β
[
Vm(t)− Vθ

]
, Vm(t) ≥ Vθ

= β
[
Vm(t)− Vθ

]
H
(
Vm(t)− Vθ

)
,

(3.53)

where β is the slope of the escape function for Vm(t) ≥ Vθ. Another typical escape
rate is given by the sigmoidal function:

f
[
Vm(t)− Vθ

]
=

1

2∆

[
1 + erf

(
Vm(t)− Vθ√

2σ

)]

=
1

∆
Φ

(
Vm(t)− Vθ

σ

)

=
1

∆
Φ
(
Vm(t); Vθ, σ2

)
,

(3.54)

where ∆ is the time constant and σ the threshold noise intensity (erf(x) is the error
function and Φ(x) is the normal cumulative density function, see p. xxi).

Departing from a continuous escape model, the probability of firing during the
time bin ∆t of a neuron that emitted a spike at ti is

P
[
spike in[t, t + ∆t]

∣∣∣Vm(t), ti

]
=

t+∆t∫

t

r(τ)dτ ≈ r(t)∆t. (3.55)
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Since the firing rate r(t) = f
[
Vm(t)− Vθ

]
can be very high for Vm(t) > Vθ, as given

by Eq. (3.52) for example, then ∆t must be very small so that r(t)∆t ≤ 1, so that
the probability axioms are not violated.

The discrete approximation for the probability that a spike occurs in the time
interval [t, t + ∆t] can be improved by calculating the probability that a spike does
not occur in the interval [t, t + ∆t], which can be approximated by:

P
[
no spike in[t, t + ∆t]

∣∣∣Vm(t), ti

]
= exp


−

t+∆t∫

t

f
[
Vm(τ)− Vθ

]

︸ ︷︷ ︸
r(τ)

dτ




≈ exp
(
−f

[
Vm(t)− Vθ

]
∆t
)

(3.56)

so that Eq. (3.55) can be approximated by

P
[
spike in [t, t + ∆t]

∣∣∣Vm(t), ti

]
= 1− exp{−f

[
Vm(t)− Vθ

]
∆t}. (3.57)

which has the advantage that even if the escape function, defined by: r(t) = f
[
Vm(t)−

Vθ

]
, is unbounded the spiking probability is bounded:

0 ≤ P
[
spike in [t, t + ∆t]

∣∣∣Vm(t), ti

]
≤ 1. (3.58)

Stochastic Integrate-and-Fire Model

A simple way to introduce variability in the output of a noise model is to add a
noise component directly to the membrane potential, which constitutes the essence
of diffusive neuron models. The LIF model differential equation of Eq. (3.37) can be
extended by adding a noise term ξ(t) to the input current that becomes:

τm
dVm(t)

dt
= −Vm(t) + RmIs(t) + σξ(t), (3.59)

by assuming a null resting potential: Er = 0, and where τm = RmCm, and σ gives
the noise power. This equation corresponds to the Langevin equation for the LIF

model. The term ξ(t) in Eq. (3.59) is a Gaussian white noise stochastic process with
mean and autocorrelation function:

E{ξ(t)} = 0; E{ξ(t)ξ(t′)} = δ(t− t′) . (3.60)

The noise term σξ(t) can be viewed as the influence of the synaptic current on
the membrane potential resulting from the stochastic spike arrival from background
activity in the neural network. For σ = 0 this influence is null and the model resumes
to the LIF model of Eq. (3.37), for an increasing σ in Eq. (3.59) the influence of the
background noise raises. The neuron fires a spike whenever the membrane potential
Vm(t) reaches the threshold potential Vθ. This model is known as the stochastic
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leaky integrate-and-fire (SLIF) model, or diffusive neuron model, and is frequently
used in several retina models [Keat et al., 2001; Pillow et al., 2005; Paninsky, 2006;
Capela et al., 2007].

Due to the linearity of the differential equation Eq. (3.59) its solution follows Eq. (3.43)
with the noise term added, becoming:

Vm(t) = Vreset e− (t−ti)

τm +
Rm

τm

t−ti∫

0

e−x/τm Is(t− x)dx +
σ

τm

t−ti∫

0

e−x/τm ξ(t− x)dx. (3.61)

Introducing the continuous convolution operator Eq. (3.61) can be written as

Vm(t) = hLIF (t) ∗ [τmVresetδ(t− ti) + RmIs(t) H(t− ti) + σξ(t) H(t− ti)] , (3.62)

where

hLIF (t) =
1

τm

e−t/τm H(t), (3.63)

is the LIF low-pass filter kernel with a pole at sp = 1/τm, where τm = RmCm.
Due to the variability of noise term it is impossible to obtain an analytic solution
for Eq. (3.61). However, considering that the noise mean is zero, the expected tra-
jectory of the membrane potential after the emission of a spike at ti, where the
membrane potential is reset to Vm(ti) = Vreset, is given by

µVm(t) = E{Vm(t)} = Vreset e−(t−ti)/τm +
R

τm

t−ti∫

0

e−x/τm Is(t− x)dx. (3.64)

Taking into account the variance of the noise process in Eq. (3.60), the variance of
the membrane trajectory is given by:

σ2
Vm

(t) = E{(Vm(t)− µVm(t))2} =
σ2

2τm

(
1− e−2(t−ti)/τm

)
, (3.65)

showing that the noisy membrane trajectory drifts away from the noiseless membrane
potential. The standard deviation from the noiseless trajectory is

lim
t→+∞

σVm(t) = σVm(∞) =
1√
2τm

σ, (3.66)

which is approached with a time constant of τm/2 as indicated by Eq. (3.65).

3.4. Modeling Input Stimuli

The input stimuli in the models described before was described as a general input
stimulus current, Is(t). This current accounts for different ways to stimulate the
neuron: it can be a directly injected current into the neuron by an electrical electrode,
like in experimental setups; can be induced by the pre-synaptic neurons to which the
neuron’s dendrites contact with; or, in retina models, this stimulus current can be
obtained directly from the visual stimulus that impinge the retina’s photoreceptors.
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3.4.1. Synapses Modeling

In Sec. 2.2.2 the communication between neurons was briefly described quantitatively.
After traveling along the axon, the action potential arrives at the neuron synapse
where it triggers the opening of calcium channels provoking an efflux of calcium ions
that causes the pre-synaptic neuron to release neurotransmitters into the synaptic
cleft (see Fig. 2.1). The neurotransmitter molecules diffuse along the synaptic cleft
and reach the postsynaptic neuron where they activate the receptors present at the
synapses of the membrane, leading to the opening of specific ion channels which
results on an excitatory post-synaptic current (EPSC) or inhibitory post-synaptic
current (IPSC). The synaptic input can be modeled in two ways: as current synapses
or conductance synapses [Burkitt, 2006].

Conductance Synapses

The EPSC and IPSC can be modeled recurring to a time dependent conductivity
gsyn(t) by:

Isyn(t) = gsyn(t)(Vm − Esyn), (3.67)

where Esyn is the reversal potential of the synapse, and Vm is the membrane potential.
Typically, for inhibitory synapses Esyn ≈ −75mV whereas for excitatory sinapses
Esyn ≈ 0mV, considering a resting potential of -65mV.

The synaptic conductance gsyn is frequently modeled as a combination of exponen-
tials. In the case of excitatory synapses, that rely on the glutamate neurotransmitter,
the main receptors are the AMPA and NMDA. The AMPA current activates and de-
activates rapidly, while the NMDA receptor is slower [Dayan and Abbot, 2001]. The
conductance of the postsynaptic membrane for the AMPA receptor, for a action
potential occurring at t = t0, is modeled by:

gsyn = ḡsynB
(
e−(t−t0)/τd − e−(t−t0)/τr

)
H(t− t0), (3.68)

where τr and τd is the rise and decay time, respectively, with τr < τd, and B is a
normalization constant. The synaptic conductance is also frequently described by an
α-function model [Bernard et al., 1994] that has the form:

gsyn =
ḡsyn(t− t0)

τr
e(1−(t−t0))/τr H(t− t0), (3.69)

and for a spike occurring at t = t0 it grows from 0 and reaches its peak value ḡsyn

for t− t0 = τr.

Current Synapses

In a current synapse the stimulus current is independent of the membrane potential
and is modeled by

Isyn = Cm




NE∑

k=1

aE,kρE,k(t) +
NI∑

k=1

aI,kρI,k(t)


 , (3.70)
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where aE,k > 0 and aI,k < 0 give the variations in the potential due to a single
synaptic action potential for the excitatory and inhibitory synapses, respectively.
NE and NI are the total number of excitatory and inhibitory synapses, respectively.
The associated charge delivered to the neuron by the excitatory synapse is CmaE,k

and CmaI,k for the inhibitory synapse. The expressions:

ρE,k(t) =
∑

tE,k

δ(t− tE,k) and ρI,k(t) =
∑

tI,k

δ(t− tI,k) , (3.71)

represent excitatory and inhibitory sets of spikes (e.g. [Jolivet and Gerstner, 2004]),
respectively.

For a spike train with a single excitatory spike, ρ(t) = δ(t− t0), the contribution
of the excitatory current given by Eq. (3.70) to the membrane potential in the LIF

model is given by:
Vm(t) = aE e−(t−t0)/τm H(t− t0) , (3.72)

where τm = CmRm is the membrane time constant.
To consider a synaptic current with a finite time duration, and not only infinitesi-

mal duration, the synaptic current can also be modeled as:

Isyn(t) = CmaE e−t/τs H(t), (3.73)

where τs is the synaptic time constant. This postsynaptic current can be modeled
from an action potential with the form of Eq. (3.71) as the solution of the differential
equation:

dIsyn(t)

dt
+

1

τs
Isyn(t) = CmaEδ(t). (3.74)

The postsynaptic membrane potential for a synaptic current with the form of Eq. (3.73)
has the form:

Vm(t) = aE∆
[
e−t/τm − e−t/τs

]
H(t) , (3.75)

with 1/∆ = 1/τs − 1/τm.
Another typical model for the synapse current is given by the α-function with the

form:
Isyn(t) = CmaEt e−t/τα H(t), (3.76)

which can be obtained as the solution of the differential equation:

d2Isyn(t)

dt2
+

2

τα

dIsyn(t)

dt
+

1

τ 2
α

Isyn(t) = CmaEρ(t), (3.77)

with ρ(t) = δ(t) for a single spike. For the input corresponding to a for a barrier of
spikes, given by ρ(t) =

∑
ti

δ(t− ti), the solution of Eq. (3.77) gives the superposition
of a series of postsynaptic currents. The membrane potential for the LIF model
due to a single input postsynaptic current with the shape of an α-function given
by Eq. (3.77) is:

Vm(t) = aE∆2
(

e−t/τm − e−t/τα

(
1 +

t

∆

))
H(t), (3.78)

where 1/∆ = 1/τα − 1/τm, and τm is the membrane time constant.
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Figure 3.12. Block diagram of a general integrate-and-fire model of the retina.

3.4.2. Visual Stimuli Input Current

In the first layer of the retina, the stimulus current comes from the photorecep-
tors’ perception of the input light pattern, and can be obtained by the convolution
of the visual stimuli with a filter or with a bank of filters, resembling the neuron
receptive field. If one is interested in modeling the RGC, then the shape of the
filter resembles the temporal and spatial receptive field of the neuron; it can be,
for example, the spike triggered average (STA) (see Section B.1.3) [Chichilnisky,
2001; Pillow and Simoncelli, 2003]. It is common to use a set of base functions
(e.g., Laguerre base functions [Tomás and Sousa, 2007], or distorted sine base func-
tions [Keat et al., 2001] as the ones represented in Fig. 3.17) to compose the input
filter. This filter can be interpreted as the spatio-temporal receptive field of the neu-
ron that selects the relevant spatial and temporal features from the stimulus to fire
a spike. Figure 3.12 shows a block diagram of a simple integrate-and-fire model of
the retina with the input stimulus current generator block.

For a general visual input stimulus with spatial and temporal dependency, the
input stimulus current is obtained through the expression:

Is(t) =

(
N∑

i=0

cihi(x, y, t)

)

︸ ︷︷ ︸
h(x,y,t)

∗s(x, y, t) , (3.79)

where ∗ represents the convolution operation that is accomplished in space and in
time. The sum index N is the number of basis functions composing the impulse
response of the input filter. In general the basis functions of the input filter, hi(x, y, t),
can be nonlinear.

3.5. Retina Models

The following sections are devoted to the description of several functional models of
the retina. These models are classified according to the type of processing they use to
estimate the neural code of the RGCs. The functional models presented in the sequel
are tuned and assessed in Chap. 5, in the context of metric analysis, to compare its
performance.
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Figure 3.13. Block diagram of a general Linear-Nonlinear-Poisson (LNP) retina model.

3.5.1. Deterministic Models

The deterministic models do not take into account the variations in the retina re-
sponse to a given stimulus. Using the same stimulus as the input for a deterministic
model will always produce the same response. The variability of the neuron response
in introduced is the spike generation mechanism (normally a non-homogeneous Poi-
sson process).

The deterministic retina model described next was reported in [Wilke et al., 2001;
Thiel et al., 2003], and outputs the firing rate. It was developed to model the tempo-
ral and spatial response of ON and of ON-OFF-type ganglion cells of a turtle retina
to the movement of a white bar crossing its visual field. It was observed that the
temporal behaviors of these two kinds of neurons are similar [Wilke et al., 2001]. The
difference is mainly noted in their spatial response, where the ON-type ganglion cells
respond only to the onset of the bar, whereas the ON-OFF-type cells respond to the
onset and to the offset of the light bar.

Model Description

The block diagram of this model is depicted in Fig. 3.14. The signal s(r, t) represents
the light stimulus pattern that hits the retina as a function of time t and space r,
where the vector r represents the stimulus spatial dependence, r = [x y]T . The first
block of the model resembles the RF of the RGC. The spatiotemporal stimulus pattern
is convolved with a kernel, K(r, t), resulting in the activation signal of the ganglion

s(r, t)
DoG

Receptive Field

Ks(r)

Kt(t)

c(r, t)

v(r, t)

g(r, t)

Contrast Gain Control

Nonlinearity

e−t/τ H(t)

q(r, t)Rectifierr(r, t)

x(r, t)
×

Figure 3.14. Block diagram of the deterministic model.
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cell, c(r, t). This operation is described by the convolution

c(r, t) = K(r, t) ∗ s(r, t) . (3.80)

In a real retina, the spatiotemporal filter K(r, t) may have a time delay: K(r, t) =
K̃(r, t + δt). For typical RFs of RGCs this kernel can be factorized, within a good
approximation, in a time and a space kernel [Wandell, 1995], such that

K(r, t) = Ks(r)Kt(t) . (3.81)

To model the spatial RF of a RGC, a difference of Gaussians (DoG) [Wandell,
1995] is frequently used to simulate it [Rodieck, 1965]. A DoG has the mathematical
description:

Ks(r) =
AC

2πσ2
C

exp

(
− r2

2σ2
C

)
− AS

2πσ2
S

exp

(
− r2

2σ2
S

)
; (3.82)

where the parameters AC and AS give the weight of the center of the RF relative to
its surroundings. The parameters σ2

C and σ2
S (σ2

C < σ2
S) control the diameter of the

center and of the outer Gaussian functions, respectively. The spatial behavior of the
RF of the ON and OFF ganglion cells can be modeled by carefully choosing these
weights. The effect of a DoG is a band-pass filtering of the spatial information of the
image.

The temporal kernel corresponds to a high-pass filter, typically expressed by:

Kt(t) = δ(t)− α e−αt H(t) , (3.83)

where 1/α is the decay rate of the filter response and H(t) is the continuous Heaviside
unit step function.

The feedback loop of the model consists of a contrast gain control block inserted to
capture the characteristics of the retinal response [Berry II et al., 1999]. The signal
c(r, t) is modulated by g(r, t), giving

q(r, t) = c(r, t)g(r, t) . (3.84)

The neuron activation signal, q(r, t), is obtained through the relation

q(r, t) = g(r, t) (K(r, t) ∗ s(r, t))] . (3.85)

The CGC loop includes a low-pass temporal filter that integrates the neuron acti-
vation signal, which usually has the following impulse response

v(r, t) = B q(r, t) ∗
(
e

−t
τ H(t)

)
, (3.86)

where parameter B controls the amplitude and τ the time duration of the integration.
Finally, the signal q(r, t) passes through a static nonlinear function, resulting in a
factor that modulates the RF output. The nonlinear function has the form

g(r, t) =
1

1 + ([v(r, t)]+)4 , (3.87)
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where [x]+ = x H(x) is the rectification operator.
At the output of the model, the activation signal is rectified to obtain the in-

stantaneous firing rate of the RGC, r(r, t). The rectification function has the form

r(r, t) = α̃[q(r, t) + Θ]+ , (3.88)

where α̃ establishes the scale and Θ the baseline for the firing rate. When the stimulus
s(r, t) is spatially uniform and temporally constant, the activity signal q(r, t) is zero.
Thus, the neuron response is just the baseline neural activity, which is equal to the
firing rate, r(r, t) = α̃Θ.

Computational Implementation
The spatial processing carried out by the RF, corresponding to the first block of the
model depicted in Fig. 3.14 inside the RF outer block, corresponds to the difference of
two-dimensional Gaussian functions of Eq. (3.82). This kernel can be obtained as the
product of two one-dimensional Gaussian bell-shaped curves for the center, one Gaus-
sian for each direction, summed with the product of two other one-dimensional Gaus-
sian curves for the outer sub-kernel. Taking the spatial center sub-kernel,KsC

(x, y)
as an example, this can be written as

KsC
(x, y) =

1

2πσCxσCy

e
− 1

2

(
x2

σ2
Cx

+ y2

σ2
Cy

)

=
1

2πσ2
C

e
− 1

2
x2+y2

σ2
C , (3.89)

where x, y ∈ R. The last equality in Eq. (3.89) results from the fact that the RF has
no preferred direction, so σCx = σCy = σC . The outer sub-kernel has an identical
form, and applying different weights to the center and outer sub-kernels, one obtains
the expression in Eq. (3.82), where we used the fact that the squared magnitude of
the position vector, r = [x y]T, is given by r2 = rTr = x2 + y2.

In order to implement the analog filter given by Eq. (3.82) in a digital computer,
it must first be converted into the discrete form. To discretize Eq. (3.82), we start
by making x = n1∆x and y = n2∆y, where ∆x and ∆y are the spatial sampling
interval length in the xx and yy directions, respectively, and n1, n2 ∈ Z. Usually the
sampling grid is equally spaced in the xx and yy directions, so that ∆x = ∆y = ∆r.
Starting by substituting the expression for sampling x and y in Eq. (3.89), we get

KsC
(n1∆r, n2∆r) = C e

− ∆r2

2σ2
C

(n2
1+n2

2)
, (3.90)

where C is a constant to be determined. To obtain the correct value for the constant
C, one must remember that the multiplicative factors in Eq. (3.89) were included in
order to normalize the integral value of the Gaussian function to one. After sampling
the Gaussian function to get a total sum equal to one, it must be normalized by the
width of the sampling interval, so that Eq. (3.90) becomes:

KsC
(n1∆r, n2∆r) =

∆r2

2πσ2
C

e
− ∆r2

2σ2
C

(n2
1+n2

2)
. (3.91)
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Figure 3.15. Discrete spatial DoG.

Finally, introducing two terms like the one in Eq. (3.91) for the center and the
other for the outer components of the RF, with weights AC and AS, respectively, and
by omitting the argument dependence on ∆r so that Ks(n1∆r, n2∆r) = Ks[n1, n2],
the discrete equation for the spatial DoG kernel becomes

Ks[n1, n2] =
AC

2π(σC/∆r)2
e

− ∆r2

2σ2
C

(n2
1+n2

2)
− AS

2π(σS/∆r)2
e

− ∆r2

2σ2
S

(n2
1+n2

2)
. (3.92)

The operation of the spatial kernel on the stimulus corresponds to its convolution
with a matrix for the two-dimensional filter for each frame obtained at each instant of
time sampling [Lim, 1990]. The shape of this spatial kernel is similar to the one of the
LoG two-dimensional function, proposed for detecting intensity changes or contours
in an image [Lim, 1990; Wulf, 2001]. Figure 3.15 shows a contour plot of a DoG,
from Eq. (3.92), with σC = 80µm, σS = 3σC , AC = 3, AS = 0.8AC , and a spatial
sampling period of ∆r = 1µm.

The second block of the RF, corresponding to the temporal kernel, with expres-
sion Eq. (3.83) in continuous time, has the Laplace transform [Oppenheim et al.,
1999b]

Kt(s) =
s

α + s
, (3.93)

where s is the Laplace complex variable. The transfer function of Eq. (3.93) has a
pole at sp = −α and a zero at sz = 0, corresponding to a high-pass temporal filter.

To achieve the discretization of this high-pass filter, we can map the Laplace fre-
quency domain into the discrete z-transform domain by means of the bilinear trans-
form. The bilinear transform is an adequate frequency mapping used to transform
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a continuous-time system representation, in the s-domain into the discrete-time z-
domain [Oppenheim et al., 1999a] which as the expression

s =
2

Ts

1− z−1

1 + z−1
, (3.94)

where Ts is the time sampling period.
By applying the bilinear transform to Eq. (3.93) we get

Kt(z) = Kt(s)|
s= 2

Ts
1−z−1

1+z−1

=
2

2 + αTs

1− z−1

1−
(

2−αTs

2+αTs

)
z−1

. (3.95)

This digital filter has a pole at zp = (2− αTs)/(2 + αTs), inside the unit circle.
Applying the properties of the z-transform [Ziemer et al., 1998], the difference

equation relating the input and the output of the temporal kernel, designated by
x[n] and c[n] in Fig. 3.14, respectively, can be written in a suitable form to be
implemented in a computer as:

c[n] =
2− αTs

2 + αTs
c[n− 1] +

2

2 + αTs
(x[n]− x[n− 1]) . (3.96)

The CGC is composed of two blocks: a low-pass filter and a nonlinear function. The
low-pass filter of the CGC can be converted into an equivalent digital filter following
the same procedure used before for the temporal kernel.

The Laplace transform of the CGC low-pass filter takes the form:

h(t) = B H(t) exp(−t/τ)
L−→ H(s) =

B

1/τ + s
, (3.97)

and by applying the bilinear transform, the expression for its transfer function is

H(z) = H(s)|
s= 2

Ts

1−z−1

1+z−1

=
BτTs

2τ + Ts

1 + z−1

1−
(

2τ−Ts

2τ+Ts

)
z−1

. (3.98)

By using the z-transform properties, we get the difference equation relating the out-
put signal v[n] with the input signal q[n] of the CGC low-pass filter:

v[n] =
2τ − Ts

2τ + Ts
v[n− 1] +

BτTs

2τ + Ts
(q[n] + q[n− 1]) . (3.99)

The nonlinearity of the model described by Eq. (3.87) can be directly implemented
in the digital domain with no difficulty. Finally, the last block of the model, denoted
by the rectifier block in the model structure of Fig. 3.14, corresponds to expres-
sion Eq. (3.88), whose computational implementation is also straightforward.

This model produces at its output the RGC firing rate. Thus, to obtain the neural
response, a spike generator that generates spikes according to the input firing rate is
required (see Sec. B.3).
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3.5.2. Stochastic Models

The stochastic retina model discussed in this section was proposed by [Keat et al.,
2001]. It produces as its output the spike train itself, avoiding the need to use an
external spike generator. The produced spike trains change from trial to trial for the
same stimulus due to the intrinsic stochastic behavior of the model. It attempts to
directly model the variability present in the responses of the RGCs.

While other models take into account that these variabilities are part of a stochastic
process adopted to generate the spike trains (the process is usually considered to be a
Poisson process), this model outputs the spike train, directly modeling its variability
by several means along the stimulus processing. The effort in the development of
the model to include the variability of the spike trains, and not leave it for the
spike generator, is justified by its proponents in consideration of the fact that the
variability of the spike trains are kept within a limited interval, smaller than that of a
Poisson process, and not accurately accounted for by an external spike generator. The
variability exhibited by the spike trains is modeled by the inclusion of two Gaussian
noise sources within the model.

This model is only concerned with the temporal dependencies of the retina response
with the stimulus. However, it is suitable to be extended in order to include a spatial
treatment of the stimulus. In particular, if it is assumed that the temporal and spatial
processing of the stimulus can be separated, as discussed for the deterministic model,
the spatial processing can be modeled by an adequate function [Dayan and Abbot,
2001], such as a DoG [Wandell, 1995].

This model was originally applied to predict the response of the retina to Gaussian
random flicker stimuli for several different types of RGCs from different vertebrates,
namely rabbit, salamander, and cat. It was also applied to model LGN neuron cells
in the case of the cat [Keat et al., 2001].

Model Description
The structure of the stochastic model is represented in the block diagram of Fig. 3.16.
The temporal stimulus s(t) is filtered by a linear filter, with impulse response F (t),
producing the generator potential g(t). The filter function F (t) is synthesized using
a linear combination of orthonormal functions, fj , weighted by kj:

F (t) =
N∑

j=1

kjfj(t) . (3.100)

The basis functions are distorted sinusoidal functions with expression:

fj(t) =





sin
(

πj
(

2 t
τF
−
(

t
τF

)2
))

, if 0 ≤ t ≤ τF

0, otherwise
. (3.101)

These base functions are preferred because of the lower number of parameters needed
to reproduce the filter waveform accurately regarding, for example, the traditional
sine functions, as in a Fourier series. This filter waveform, which is similar to the STA,
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s(t)

F (t)

g(t) h(t)

a(t)

θ

Rectifier
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b(t) + 1

x(t)y(t)

q(t)

Figure 3.16. Block diagram of the pseudo-stochastic model.

has an impulse response with a high amplitude near the origin that decays rapidly
over longer times. The parameter τF controls the time duration of the filter response.

The signal g(t) in Fig. 3.16 results from the convolution of the stimulus s(t) with
this linear filter F (t):

g(t) =

t∫

−∞
s(τ)F (t− τ)dτ . (3.102)

Fifteen different components with the form Eq. (3.101) are used to synthesize F (t),
which corresponds to making N = 15 in Eq. (3.100). This filter selects the stimuli
patterns to which the model will fire events because the signal g(t) will be strongest
when the visual stimulus follows a pattern similar to this filter response. Most of the
model’s parameters are used to appropriately adjust this filter function.

Posteriorly, the signal g(t) is summed with a noise component a(t), and with a
feedback signal coming from the feedback block, resulting in the signal h(t), which
is then compared with a threshold. The threshold block is composed of three main
parts: i) the signal h(t) is compared with a threshold level θ, so that it has a term
of the form δ(h(t)− θ), corresponding to the firing of a spike; ii) it has a term of the
form H(ḣ(t)) in order to guarantee the model only fires one spike when the signal
crosses the threshold in the upward direction; and finally, iii) these two terms are
multiplied by the derivative of h(t) with respect to time, denoted by ḣ(t). Thus,
only when the signal crosses the threshold from below a spike is fired, while when the
signal h(t) crosses the threshold from above nothing happens, and the firing intensity
is proportional to the intensity increase of h(t). The output signal of the threshold
block is:

q(t) = δ(h(t)− θ)
dh(t)

dt
H

(
dh(t)

dt

)
. (3.103)

These first two blocks, the filter F (t) and the threshold block, are intended to
predict the time occurrence of the firing events, correspondingly making a(t) = b(t) =
P (t) = 0 in the model structure of Fig. 3.16. In order to predict the correct number
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of firing events, a feedback block is introduced in the model to take into account the
refractory period of the ganglion cells after a firing event. Each fired spike triggers a
negative after-potential P (t) that is added to the generator potential g(t), lowering
the signal h(t) immediately after a firing. The after-potential function P (t) has the
form

P (t) = B e−t/τp H(t) , (3.104)

where B and τp are two other parameters of the model that define the characteristics
of the low-pass filter. The parameter B controls the amplitude of the after potential,
while τp gives the time decay of the after potential.

The after-potential makes the signal h(t) drop below the threshold after the firing
of a spike. However, if g(t) continues to rise in such a way that it compensates for
the negative potential P (t), the model will fire again, such that large increments of
g(t) lead to a train of several spikes. After a firing event, the signal h(t) is lower than
g(t) as a result of the accumulated after potentials, and the probability of subsequent
firing events is reduced until the after-potential decays. This negative feedback loop
simulates both repetitive firing within a firing event and a refractory behavior after
the firing of a spike.

The input signal of the feedback block can be written as:

q(t) = δ(h(t)− θ)ḣ(t) H(ḣ(t)) , (3.105)

where ḣ(t) is included in the threshold function such that the potential block input
in the feedback loop is proportional to the slope, or instantaneous increase, of h(t).
With the addition of the feedback loop, the generator potential becomes

h(t) = g(t) + a(t) +

t∫

−∞
q(τ)(1 + b(τ))P (t− τ)dτ . (3.106)

The output spike train is a series of delta functions, as described by Eq. (B.7), oc-
curring at time instants ti, whenever the generator potential h(t) crosses the threshold
θ from below. Its expression is equal to Eq. (3.105) without the h(t) derivative term,
and is written as

ρ̂(t) = δ(h(t)− θ) H(ḣ(t)) . (3.107)

As mentioned previously, this model also attempts to model the variability of the
neural response from trial to trial. This variability comprises the variation in the
total number of spikes and the variation in the time instants that spikes occur. This
is modeled by including two Gaussian noise sources: a(t) and b(t). The amplitudes of
the noise signals change over time, and consequently, the spike trains change between
trials.

The random signal a(t) is added to the generator potential g(t) before the threshold
block, introducing a random variability into the exact time of occurrence of the
threshold crossing. This noise source has a Gaussian distribution with a zero mean, a
standard deviation of σa, and an exponentially decaying autocorrelation function with
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Figure 3.17. Distorted sinus base functions (τF = 0.95s).

time constant τa. The variability introduced by a(t) was not sufficient to reproduce
the neural response variability, despite the fact that the spike occurrence variability
was well modeled. The variability in the spike number was lower than the observed
results from real neurons, and therefore the noise source b(t) was also included.

The noise source b(t) drives, in conjunction with the output of the threshold block,
the negative after-potential generator by randomly modulating its amplitude after
each spike. This noise source has a Gaussian distribution with a zero mean and a
standard deviation of σb.

Computational Implementation

The stochastic retina model described in the previous section considers continuous
signals and systems, and must be discretized in order to be implemented in a dig-
ital computer. The steps to implement this retina model in a digital computer are
described.

The impulse response F (t) of the filter, represented by the first block in Fig. 3.16,
was decomposed as a linear combination of basis functions consisting of distorted
sinus functions described by (Eq. (3.101)). These functions were discretized using
a sampling period Ts, for a filter length equal to τF , for j = 1, . . . , N . After being
sampled, the resulting N vectors were orthonormalized using the Gram-Schmidt
procedure [Arfken and Weber, 2005], leading to the vectors fj, where j = 1, . . . , N .
Figure 3.17 shows a plot of the first eight of these distorted sinus functions, with
j = 1, . . . , 8.

The filter impulse response F (t) was initialized with a shape equal to the time
reverse of the STA. The STA was defined in Section B.1.3 in its continuous and
discrete form, and it is denoted in its discrete-time form by the vector sspk. The time
reverse of the STA was decomposed as a linear combination of the basis functions,
as Eq. (3.100) indicates. The discrete orthonormal vectors fj , with j = 1, . . . , N ,
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were brought together to compose the matrix F⊥, which is written as

F⊥ =



| | |
f1 f2 · · · fN

| | |


 . (3.108)

The coefficients kj, j = 1, . . . , N in Eq. (3.100) that are components of the vector k
were initialized with the values resulting from the matrix-vector product:

k = FT
⊥s̃spk , (3.109)

where s̃spk is the vectorial representation of the time reverse of the STA.
Figure 3.18 shows the time reverse of the STA superimposed with its reconstruction

using the base functions of Fig. 3.17 after orthonormalization. The filter impulse
response, represented by the vector F, is obtained through the matrix product

F = F⊥k , (3.110)

and filters the stimulus entering the model.
The threshold block in Fig. 3.16, corresponding to Eq. (3.105), has a direct im-

plementation. If the discrete input signal h[n − 1] is smaller than the threshold θ,
but h[n] is bigger than θ (meaning that there is a threshold crossing in the upward
direction), a spike is fired and the output signal has the value q[n] = h[n]− h[n− 1].
If this situation does not occur, then the output signal is made equal to q[n] = 0. It
is worth noting that the signal q[n] is proportional to the slope of h[n] whenever it
crosses the threshold from below, which means that the feedback potential block is
excited by a signal proportional to the slope of the generator potential. The signal
q[n] can be computed by using the discrete counterpart of Eq. (3.105),

q[n] = δ [h[n]− θ] H [h[n]− h[n− 1]] (h[n]− h[n− 1]) . (3.111)
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As a matter of fact, in order to compute the equation, the term δ[h[n]−θ] in Eq. (3.111)
must be made equal to one whenever h[n] is in the vicinity of θ, that is when
|h[n]− θ| < γ, since the signal h[n] would be exactly equal to θ only by chance.

The signal q[n] is convolved with the negative potential that has the continuous
expression Eq. (3.104). This potential corresponds to a low-pass continuous filter, as
can be seen from its Laplace transform in Eq. (3.112). The discrete counterpart of
the after-potential can be obtained by applying the bilinear transform to map the
Laplace frequency domain into the z-transform domain.

The Laplace transform of the negative potential is

P (t) = Be−t/τp H(t)
L−→ P (s) =

B

1/τp + s
, (3.112)

which has a unique pole at sp = −1/τp corresponding to a stable filter. The appli-
cation of the bilinear transform to Eq. (3.112) leads to the same equivalent discrete
filter in the z-transform domain as obtained in Eq. (3.99) with τ = τp:

P (z) = P (s)|
s= 2

Ts
1−z−1

1+z−1

=
BτpTs

2τp + Ts

1 + z−1

1− (2τp−Ts

2τp+Ts
)z−1

.
(3.113)

Referring to the properties of the z-transform [Ifeachor and Jervis, 2002], the differ-
ence equation for the filter corresponding to the negative feedback potential obtained
from Eq. (3.113) is

y[n] =
2τp − Ts

2τp + Ts
y[n− 1] +

BτpTs

2τp + Ts
(x[n] + x[n− 1]) , (3.114)

which is used in the computational implementation of the model.
The last items to include in the discrete implementation of the stochastic model are

the Gaussian noise sources: a(t) and b(t). Concerning b(t), it is enough to generate a
random sequence with a Gaussian distributed amplitude with a zero mean and unit
variance and multiply each new generated sample by the desired standard deviation
σb. In the case of a(t), in addition to the variance σ2

a, this noise sequence has an
autocorrelation function with an exponential form with a constant decay rate equal
to τa.

To generate a discrete noise sequence equivalent to a(t), a linear system driven by
a discrete white noise sequence with a zero mean and unit variance can be used. The
transfer function of this system must be determined such that its output is a random
sequence with the desired statistical characteristics. This process is called prewhiten-
ing, as it is the reverse of whitening [Orfanidis, 1990]. The required continuous noise
has an autocorrelation function with the form

Ra(τ) = σ2
a e−|τ |/τa , (3.115)
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that takes the value Ra(0) = σ2
a, for a lag τ = 0, corresponding to the variance of the

continuous random noise. The discrete noise sequence should have an autocorrelation
sequence equal to Eq. (3.115) at the sampling points. Using a sampling period equal
to Ts, the autocorrelation sequence becomes

Ra[l] = σ2
a e−|l Ts|/τa = σ2

a (e− Ts/τa

︸ ︷︷ ︸
̺

)|l|

= σ2
a ̺|l| .

(3.116)

By considering a linear shift invariant system with impulse response h[n] sub-
jected to the input x[n] that produces the output signal y[n] = h[n] ∗ x[n], if the
autocorrelation of the input signal is Rx[l] and the output autocorrelation is Ry[l],
the relationship between these two discrete autocorrelation functions is [Therrien,
1992]

Ry[l] = h[l] ∗ h[−l] ∗Rx[l] . (3.117)

By taking the z-transform of this expression, we get

Sy[z] = H [z] H [z−1] Sx[z] , (3.118)

where Sx[z] and Sy[z] are the z-transforms of the input and output signals, respec-
tively, corresponding to their spectral densities.

A discrete pure white noise sequence, w[n], with a zero mean and a variance σ2
w

has the autocorrelation function

Rw[l] = σ2
wδ[l] , (3.119)

and for the particular case of a white noise sequence with unit variance, the spectral
density is:

Rw[l] = δ[l]
Z−→ Sw(z) = 1 . (3.120)

If a discrete white noise sequence with zero mean and unit variance is used as
the input for the prewhitening filter, the system transfer function H(z) must be
found that transforms this input white noise sequence into a discrete output random
sequence with the spectral density

Ra[l] = σ2
a ̺|l| Z−→ Sa(z) =

σ2
a(1− ̺2)

(1− ̺z)(1− ̺z−1)
, |̺| < |z| < 1/|̺| . (3.121)

Plugging the input and output spectral densities, Sw(z) and Sa(z), respectively,
into Eq. (3.118), the equation becomes

H(z)H(z−1) =
σ2

a(1− ̺2)

(1− ̺z)(1− ̺z−1)

=
σa

√
1− ̺2

1− ̺z

σa

√
1− ̺2

1− ̺z−1
|̺| < |z| < 1/|̺| .

(3.122)
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Figure 3.19. System function to generate the required noise sequence.

From the factorization in Eq. (3.122), it is possible to identify

H(z) =
σa

√
1− ̺2

1− ̺z−1
, (3.123)

which corresponds to a causal, stable, and minimum-phase system [Therrien, 1992].
Calculating the inverse z-transform for this transfer function, we get the impulse
response

h[n] = σa

√
1− ̺2̺n H[n] , (3.124)

where H[n] is the discrete Heaviside unit step function. By applying the z-transform
properties to Eq. (3.123), we obtain the following difference equation for the filter:

a[n] = ̺ a[n− 1] + σa

√
1− ̺2 w[n] . (3.125)

From Eq. (3.116), we have that ̺ = e−Ts/τa in the last expressions. Figure 3.19 is a
sketch of a first order linear system that generates the desired noise sequence when
driven by white noise.

The estimation of the discrete neuronal function ρ̂[n] is computed from the input
signal of the threshold block h[n] by

ρ̂[n] = δ
[
h[n]− θ

]
H
[
h[n]− h[n− 1]

]
, (3.126)

which is similar to the expression for the signal q[n] in Eq. (3.111) except for the
amplitude. Therefore, we can compute the output of the threshold block from q[n]
as:

ρ̂[n] =





1 , q[n] > 0

0 , q[n] = 0
, (3.127)

that can be written simply as ρ̂[n] = 1− δ[q[n]]. It should be noted from Eq. (3.111)
that q[n] ≥ 0.

3.5.3. White Noise Model

A simple model based on a basic form of white noise analysis of the RGCs’ responses to
random light patterns was proposed in [Chichilnisky, 2001] and [Baccus and Meister,
2002]. The use of white-noise analysis of system model started with the seminal works
of Norbert Wiener.
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s(t)

w

w · s
NL(·)

r(t)

Figure 3.20. The white noise model structure.

White noise analysis has some relevant features; for example, it can generate
a quantitative model for the spatial, temporal and spectral responses of the vi-
sual system neurons by taking into account its nonlinearities [Schwartz et al., 2002;
Chichilnisky, 2001; Rust et al., 2004; Simoncelli et al., 2004; Baccus and Meister,
2002]. These models can be considered deterministic, since they do not include
any intrinsic noise source, and the variability is introduced by the spike generator.

Model Description

The white noise model is portrayed as a block diagram in Fig. 3.20. The first block is
a linear filter with an impulse response equal to the time-reverse of vector w, which
is proportional to the STA if the stimulus space possesses certain characteristics. The
second block is a nonlinear function that maps the generator potential signal, given
by the inner vector product w·s = wT s, onto the retina firing rate. The filter impulse
response is obtained by white noise analysis of the ganglion cell responses, and the
nonlinear function on the second block is obtained by fitting a curve to the generator
potential plotted against the firing rate. This retina model gives the neuronal firing
rate as the output, assuming that it depends only on the generator signal. The
generator signal is a linear combination of the visual stimulus that reaches the retina
over a specific region and time period. In order to have a spike train, a spike generator
must be used to convert the estimated firing rate to the neural function.

The time interval T , during which the retina is stimulated and the produced spike
trains are recorded, is discretized into time bins of width ∆t, resulting in a total
recording number of time bins N = ⌊T/∆t⌋. The number of spikes observed in the
time bin n is represented by fn, where 1 ≤ n ≤ N . Furthermore, the number of
spikes is related to the neural response function ρ(t) defined in Eq. (B.7) by

fn =

n·∆t∫

(n−1)·∆t

ρ(τ)dτ . (3.128)

Each time bin n has a corresponding stimulus vector, which is represented by sn,
with dimension k, whose elements are the stimulus intensities as a function of space
and time, in the time bins immediately preceding the instant n∆t. That is,

sn =




s(r, n∆t)
s(r, (n− 1)∆t)

...
s(r, (n− k + 1)∆t)




. (3.129)
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The definition of sn in Eq. (3.129) considers spatial information, which is indicated
by the displacement vector r in its elements, since the stimulus can carry spatial
information. For the case when the stimulus is spatially uniform, this dependency is
dropped. The displacement vector r spans the retinal area that influences the RGC

under analysis, corresponding to their RF. In general, it is a matrix of positions for
each value of the time index n.

The time duration of the stimulus vector sn, which is equal to k∆t, must be
sufficiently long to exceed the ganglion cell memory. This corresponds to the period
over which the stimulus can affect the cell response; thus, the neuron response fn at
time n∆t depends only on the stimulus sn.

Each stimulus vector sn can be viewed as a point in a k-dimensional stimulus
space S, and it is assumed that it is drawn randomly from S with a probability
distribution given by P (s). This probability distribution is considered to be radially
symmetric about the origin in stimulus space, and so any two stimulus vectors s
and s∗ ∈ S with equal vector length have equal probability of being drawn from the
distribution, that is,

|s| = |s∗| ⇒ P (s) = P (s∗) . (3.130)

The radial symmetry implies negative entries in some of the stimulus vectors,
meaning that the stimulus entries specify the contrast, or deviation, from a mean
intensity level. These stimulus vectors can be generated using a Gaussian white
noise sequence, which corresponds to sampling a Gaussian density function with zero
mean and a standard deviation equal to the desired contrast. In general, the stimulus
intensity for every spatial location, time bin, and wavelength could be drawn from
Gaussian noise sequences.

The modeled neural response, R(s), is the average value of the spike count f in
the time bin immediately following the stimulus s. This can be written as

R(s) = 〈f |s〉 =
∑

f

f P (f |s) , (3.131)

which states that R(s) is proportional to the expected response given the stimulus.
In terms of the cell firing rate r(t), the relation is

R(sn) = r(n∆t) ·∆t . (3.132)

The angle bracket notation in Eq. (3.131) represents the trial average across exper-
iments for the same stimulus. The right hand equality in Eq. (3.131) comes from
the definition of statistical expectation, where P (f |s) is the probability distribution
of the number of spikes f given a certain stimulus s. To be successful, the final
model should predict the average number of spikes per time bin observed after the
presentation of a given stimulus.

The white noise analysis estimates R(s). For the model in analysis, it is assumed
that R(s) is a static nonlinear functional of a real linear function of the stimulus:

R(s) = NL(w · s) , (3.133)
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3.5. Retina Models

where w is a fixed weighting vector and NL(·) is a real-valued nonlinear function of
one variable. The vector w weights the neuron stimulus intensities over space and
time and defines the neuron stimulus selectivity. The dot product w · s = wT s is the
generator signal that controls the firing rate through the nonlinear function NL(·).
(See Fig. 3.20.)

Equation (3.133) shows that the model response does not depend on previous
responses, but solely on the stimulus, meaning that the spikes are generated by a
Poisson-like process with a rate parameter equal to the expected response R(s). To
obtain a spike train, a spike generator must be added at the output of the model
in Fig. 3.20.

The weight vector w, as in many retinal ganglion cells models, is related to the STA.
For this particular setup, the STA (see Sec. B.1.3), that corresponds to the average
stimulus preceding the spikes generated by the neuron, is given by

sspk =

N∑
n=1

snfn

N∑
n=1

fn

, (3.134)

where N denotes again the total number of time bins. Equation (3.134) represents
the discrete spike triggered average sspk, which is now a vector of dimension k (the
same dimension as sn); the time dependency of the definition given by Eq. (B.39) is
implicit.

Dividing the numerator and denominator of Eq. (3.134) by the total time duration
T of the stimulus, it becomes

sspk =

1
T

N∑
n=1

snfn

1
T

N∑
n=1

fn

. (3.135)

If the response record lasts for a long time, such that T → ∞, the denominator
in Eq. (3.135) is the average firing rate 〈r〉, defined in Eq. (B.23). Also, as T → ∞
the numerator in Eq. (3.135) tends to the time average 〈sf〉. Statistically, this
expectation can be expressed as the sum of all stimulus response pairs weighted by
the probability of observing that particular stimulus response pair:

〈sf〉 =
∑

s

∑

f

sfP (s, f) . (3.136)

Using Bayes’ rule, and by applying Eq. (3.131), the expression in Eq. (3.136) can be
written as

〈sf〉 =
∑

s

∑

f

sfP (s)P (f |s)

=
∑

s

sP (s)
∑

f

fP (f |s)

︸ ︷︷ ︸
R(s)

=
∑

s

sP (s)R(s)

. (3.137)
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3. Neuron and Retina Models

Replacing the result of Eq. (3.137) in Eq. (3.135) and considering large values of
T , the following expression is obtained for the STA:

sspk =
1

〈r〉
∑

s

sP (s)R(s) . (3.138)

The spike triggered average in Eq. (3.138) approaches a sum of stimulus vectors,
where each vector is weighted by its probability of being drawn, times the average
response it induces, that is normalized by the average firing rate.

The radial symmetry of the stimulus space means that there are two stimulus
vectors, s∗ ∈ S and s ∈ S, positioned symmetrically relative to the vector w, that
have equal probability of being drawn. This means that P (s) = P (s∗). Introducing
this result into Eq. (3.138), and using the equality in Eq. (3.133), we obtain

sspk =
1

〈r〉
∑

s, s∗

[sP (s) NL(w · s) + s∗P (s∗) NL(w · s∗)]

=
1

〈r〉
∑

s,s∗

(s + s∗)P (s) NL(w · s) ,
(3.139)

where the factorization in the last equality results from the fact that s and s∗ have
equal probability of being drawn and are symmetric around w. This implies that
w · s = w · s∗. The symmetry of s and s∗ around the vector w also implies that
s + s∗ is proportional to w. Furthermore, since all other quantities in Eq. (3.139) are
scalars, it can be concluded that the vector w is proportional to the STA:

w ∝ sspk . (3.140)

This reasoning leads to the conclusion that the linear part of the model in Fig. 3.20,
corresponding to w, is equal to the STA vector sspk multiplied by a gain factor.

The linear weighting vector w expresses the way the neuron integrates the visual
stimuli. The temporal structure of w corresponds to the time-reverse of the neuron’s
impulse response, and the spatial structure of w describes the neuron’s RF. The
neuron memory can also be obtained by examining the time duration of the impulse
response, and the spectral response of the neuron can be characterized by analyzing
the chromatic structure of w.

The gain factor can be taken into account by including a scale factor to adjust the
nonlinearity function. Thus, a proportionality constant equal to unity can be used
in Eq. (3.140), such that w = sspk.

Finally, the nonlinear function has to be estimated. Since NL(·) is a real-valued,
positive function of the generator potential gn = w ·sn, and the values of fn are avail-
able, it is possible to plot the values of the generator potential gn against the number
of spikes in each bin fn, for every 0 < n ≤ N , to estimate the form of NL(·). The non-
linearity can be estimated by plotting the generator potential against the number of
spikes it produces and fitting the nonlinear function using a minimization error crite-
rion. For example, the nonlinear mapping function has the expression [Chichilnisky,
2001]:

f(x) = rmax Φ(βx + γ) , (3.141)
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where Φ(x) represents the normal cumulative density function (CDF)– the integral of
the standard Gaussian function [Abramowitz and Stegun, 1965] which is related to
the error function, erf(x), by:

Φ(x) =
1

2
+

1

2
erf(x/

√
2). (3.142)

The parameter rmax gives the maximum firing rate of the neuron, β is the sensitivity
of the nonlinearity to the generator signal and γ gives the baseline firing rate, which
defines the firing rate in the absence of any visual stimulation. The parameter γ can
also be negative, meaning that the generator potential must overcome this value to
fire a spike. The drawback of the normal CDF function, in terms of computational
implementation, is that its expression,

Φ(x) =

x∫

−∞

1√
2π

e− 1
2

t2

dt , (3.143)

does not have a closed mathematical form and must be calculated numerically. This
imposes some constraints on its implementation in a signal processing system.

Another commonly used nonlinear mapping function is the sigmoidal function
[Dayan and Abbot, 2001], with the expression

f(x) =
rmax

1 + e(g1/2−x)/∆g
, (3.144)

where the parameter rmax once again represents the neuron maximum firing rate, g1/2

is the generator potential value that produces a firing rate with half of its maximum
value, and ∆g controls how quickly the firing rate increases as a function of the
generator potential g. For a negative ∆g, the firing rate decreases monotonically
with the generator potential. Plots for the STA and for the least squares adjustment
of the nonlinear function for a salamander ON-type and for a rabbit OFF-type brisk
RGC, corresponding to the expressions in Eq. (3.141) and Eq. (3.144), in Fig. 3.21
are similar in the interval of interest, which means that both nonlinearities can be
used in the model without noticeable differences.

Computational Implementation
This simple white noise model can be considered as fitting a curve to the number of
fired spikes as a function of a stimulus characteristic, specifically the stimulus projec-
tion onto the STA, which is a common procedure in neuron modeling in theoretical
neuroscience [Dayan and Abbot, 2001]. Its implementation for a computer is quite
straightforward, since all expressions are already in discrete form.

First, the model parameters must be estimated (the STA) using experimental data;
the example in Fig. 3.21 uses a salamander ON-type cell and a rabbit OFF-type
brisk transient cell [Keat et al., 2001]. The vector w is obtained from the spike
triggered average stimulus, depicted in Fig. 3.21 for both types of cells used. The
spike occurrence is considered to be located at the time instant 0, and so the negative
time values are the time instants before the spike occurrence.
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Figure 3.21. White noise model characterization for a salamander ON-type cell and for
a rabbit OFF-type transient brisk cell. The spike triggered average for the salamander
cell (a) and the rabbit cell (b). Generator signal versus number of spikes per time bin for
the salamander cell (c) and for the rabbit cell (d), with ∆t = 10 ms

To fit the nonlinear function a table with the points is built, corresponding to the
generator potential gn = w · sn and the number of fired spikes, fn, for the respective
time bins. The number of elements in this table depends on the time bin width.
The used time bin, ∆t = 10 ms, was large when compared to the sampling period of
Ts = 1 ms. The number of spikes per time bin oscillates with the generator potential.
The range of the generator potential values was divided into 20 equal subintervals,
and the values of the generator potential and of the spikes per bin were averaged for
each interval. The plots in Fig. 3.21c and Fig. 3.21d show the plots of the generator
potential against the number of spikes per time bin for the analyzed RGC cells.
We observe that the nonlinear function shows different behaviors from the plot in
Fig. 3.21c, for the case of the salamander ON-type cell, and in Fig. 3.21d, for the case
of the rabbit OFF-type transient brisk cell. These graphs also show that using the
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sigmoidal nonlinearity of Eq. (3.144) leads to a curve fit similar to the one obtained
with the normal CDF function within the spread of points in the plot. The sigmoidal
nonlinearity is preferred when taking into account computational feasibility.

The inner product between the vector w and the succeeding stimulus vectors sn

can be viewed as a linearly filtered discrete stimulus signal s[n] with an impulse
response equal to the time reverse of w [Moon and Stirling, 2000]. This approach
was followed in the model implementation, and the filter output was used as the
argument to drive the nonlinear function. This, in turn, produces the firing rate r[n].
In Chap. 5, the results for this model are further described and evaluated.

3.6. Conclusions

This chapter presents the most relevant neural structures used in neural models and
in retina models in particular. Departing from the Hodgkin-Huxley model the most
relevant spiking structures are discussed and analyzed. The modeling of the synaptic
input stimuli and visual stimuli was also discussed. These blocks are ubiquitous and
form the basis of many retina models, and are used in the proposed retina models
presented in the next chapter.

The second part of the chapter is devoted to providing an overview of the diversity
of retina models by describing representative models from different classes. These
models are further analyzed and assessed in Chap. 5 in the context of analysis and
discussion of the application of neural activity metrics in the models’ evaluation.
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The question of nature’s susceptibility to mathemat-

ical description has some deep philosophical aspects,

and in practical terms we have to take a more prag-

matic view of models. Our acceptance of models

should thus be guided by "usefulness" rather than

"truth".

Ljung, L. (1999). System Identification: Theory for

the User. Pearson Education, New Jersey, USA

4
Modeling the Retina

4.1. Introduction

T
his chapter presents two distinct models for the retina. These models were
developed based on the leaky integrate-and-fire model and on the linear-
nonlinear-Poisson model, representative of two main classes of neuron models,

namely the spiking retina models and firing rate retina models, respectively. The
first model uses a set of static and dynamic filters and the leaky integrate-and-
fire (LIF) mechanism to produce the spike train output, belonging to the spiking
neuron models [Tomás et al., 2008]. The second proposed retina model is based on
the white-noise analysis of the retina responses to obtain excitatory and inhibitory
filters that are mapped through functional nonlinearities estimated to generate the
firing rate. This model uses a Poisson firing rate mechanism to generate the spike
trains, belonging to the class of firing rate models [Martins et al., 2007]. Both models
take into account the temporal processing of the visual stimuli since the available
retina data is only of the full-field type.

4.2. A Static/Dynamic Retina Model

In order to study a structural model a dynamic retina model is proposed and ana-
lyzed. This model is composed by distinct dynamic and static components so that
it can be analyzed solely with its static components and with the static and the dy-
namic components. The variants of this retina model are implemented, tuned, and
the results analyzed [Tomás et al., 2008].

The static structure is studied, where the neuron current has only two static com-
ponents: one dependent on the input stimulus and the other on the spike history.
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Figure 4.1. Dynamic retina model.

Afterwards, a dynamic structure is added where, besides the static components, two
additional dynamic components are included, one dependent on the stimulus and the
other on the spike history. Both dynamic currents are modulated by a signal which
is a function of the stimulus and on the spike history. The complete structure of the
model is depicted in Fig. 4.1.

The output feedback mechanism takes into account the effect that a spike emission
has on the dynamics of the neuron, like the refraction behavior. The dynamic model
modulates its output not only by the stimulus characteristics but also by the recent
spike history. The model’s parameters are initialized using spike-triggered analysis.

4.2.1. Model Structure

The firing mechanism of this model is based on the SLIF model described in Sec. 3.3.4,
where the current is integrated and a spike is fired whenever the threshold is sur-
passed from below. The current generation depends both on the stimulus and on the
spike history. As described in Chap. 2 the horizontal and amacrine cells establish
feedback paths to model the response of the retina to changes in the illuminance and
contrast of the scene[Kolb, 1997; Baccus and Meister, 2002], despite these feedback
mechanisms being minimal in the fovea, these adaptation processes also occur at the
bipolar [Rieke, 2001], and ganglion cells [Kim and Rieke, 2001]. In a bioelectronic
prosthesis the techniques used in video cameras for the illuminance and contrast
adaptation mechanisms can be employed. However the spike history effects such as
refractoriness and burstiness demands the inclusion of output feedback mechanisms.
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The static current components in Fig. 4.1 are given by:

isf (t) = hsf(t) ∗ s(t), (4.1a)

isb(t) = hsb(t) ∗ ρ(t), (4.1b)

where hsf(t) is the static forward filter, and hsb(t) is the static backward filter. The
signal s(t) is the input visual stimulus and ρ(t) is the output spike sequence.

The forward dynamic block is composed by a set of linear filters h
(k)
df (t) that filter

the input stimuli, and whose amplitude is dynamically modulated by the linear func-
tion c

(k)
df

(
s(t), ρ(t)

)
that depends both on stimulus and spike history. The dynamic

forward current is given by:

i
(k)
df (t) = c

(k)
df (t)[h

(k)
df (t) ∗ s(t)], (4.2)

where
c

(k)
df (t) = h

(k)
fdf (t) ∗ s(t) + h

(k)
fdb(t) ∗ ρ(t). (4.3)

In the backward dynamic block the output spike sequence is filtered by the set of
linear filters h

(k)
db (t) whose amplitude is modulated by c

(k)
db (t) which depends also on

the stimulus and on the spike history. The dynamic backward current is given by:

i
(k)
db (t) = c

(k)
db (t)[h

(k)
db (t) ∗ ρ(t)], (4.4)

where
c

(k)
db (t) = h

(k)
bdf (t) ∗ s(t) + h

(k)
bdb(t) ∗ ρ(t). (4.5)

The overall input current is given by:

Is(t) = isf(t) + isb(t) +
∑

k

i
(k)
df (t) +

∑

k

i
(k)
db (t), (4.6)

and the membrane potential Vm(t) follows Eq. (3.62).

4.2.2. Model Implementation

The model is discretized with a sampling period Ts. The filters of the static compo-
nents were discretized into the vectors:

hsf =
[
hsf [1] hsf [2] · · · hsf [M ]

]T
, hsb =

[
hsb[1] hsb[2] · · · hsb[M ]

]T
, (4.7)

where M is the filter’s memory length. Each filter is described as a linear combination
of basis functions, which allows to reduce the dimensionality of the model parameters
and decrease the parameters overfitting to the data in the training phase.

Considering the discrete basis functions’ vectors bk =
[
bk[1] bk[2] · · · bk[M ]

]T
,

k = 1, 2, · · · , B, organized in matrix form as:

B =
[
b1 b2 · · · bB,

]
(4.8)
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the filters hx in Eq. (4.7), with x ∈ {sf, sb}, are synthesized by:

hx =
B∑

k=1

axkbk =
(
aT

x BT
)T

= Bax, (4.9)

where ax =
[
ax1 ax2 · · · axB

]T
are the synthesis coefficients of the filter im-

pulse response in terms of the base functions bk. The impulse response of the fil-

ters in the dynamic components h(k)
x =

[
h(k)

x [1] h(k)
x [2] · · · h(k)

x [M ]
]T

, with k =

1, 2, · · · , C and x ∈ {df, db, fdf, fdb, bdf, bdb}, can be organized in the matrix: Hx =[
h(1)

x h(2)
x . . . h(C)

x

]
which can be written in terms of the basis functions matrix B

as:
Hx =

[
Ba(1)

x Ba(2)
x · · · Ba(C)

x

]
= BAx, (4.10)

where the matrix A is defined by:

Ax =
[
a(1)

x a(2)
x · · · a(C)

x ,
]

(4.11)

whose columns are the synthesis coefficients of the dynamic filters.
From Eq. (4.1) the discrete static current components are given by:

isf [n] = (Basf)[n] ∗ s[n], (4.12a)

isb[n] = (Basb)[n] ∗ ρ[n− 1]. (4.12b)

The discrete forward dynamic current component is:

i
(k)
df [n] = c

(k)
df [n]

[
h

(k)
df [n] ∗ s[n]

]
, (4.13)

using the synthesis expression for the dynamic filters of Eq. (4.10) it can be written
as:

i
(k)
df [n] = c

(k)
df [n](BAdf)∗k[n] ∗ s[n]. (4.14)

Considering Eq. (4.3) and Eq. (4.10) the discrete modulation forward coefficients are
given by:

c
(k)
df [n] = (BAfdf )∗k[n] ∗ s[t]) + (BAfdb)∗k[n] ∗ ρ[n− 1], (4.15)

these coefficients can be organized in a vector: cdf [n] =
[
c

(1)
df [n] · · · c

(C)
df [n]

]T
such

that it can be written as:

cdf [n] =
[
(BAfdf )[n] ∗ s[n] + (BAfdb)[n] ∗ ρ[n− 1]

]T
, (4.16)

where the convolution of a matrix with a signal is made by convolving every column
of the matrix with the signal, resulting in a row vector.1

Using Eq. (4.16) the dynamic forward current in Eq. (4.14) can be written as:

idf [n] =
[
BAdf [n] ∗ s[n]

]
cT

df [n]. (4.17)

1 An×m[n] ∗ s[n] =
[
(A∗1[n] ∗ s[n]) · · · (A∗m[n] ∗ s[n])

]T
.
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In a similar way, the discretization of the modulation backward coefficients of
Eq. (4.5) are given by:

cdb[n] =
[
(BAbdf)[n] ∗ s[n] + (BAbdb)[n] ∗ ρ[n− 1]

]T
, (4.18)

so that the discrete dynamic backward current can be written as:

idb[n] =
[
BAdb[n] ∗ ρ[n− 1]

]
cT

db[n] . (4.19)

The following sequence is obtained by sampling the integrator filter of Eq. (3.63)
at n = 0, 1, · · · for t = nTs, with Ts as the sampling period:

hLIF [n] = e−nTs/τm H(nTs), (4.20)

which z-transform is given by:

HLIF (z) =
1

1− e−T s/τm z−1
, |z−1| < eTs/τm . (4.21)

For convenience, the integrator discrete linear filter used in the model has the z-
transform

HLIF (z) =
1− β

1− βz−1
, (4.22)

which is a IIR filter with unitary DC gain. β = e−T s/τm defines a pole at sp(=
−1/τm) = 1

Ts
log(β). In order for the filter to remain stable and causal one must

have β ∈]0, 1[, so that sp < 0. By taking the inverse z-transform of Eq. (4.22), the
causal discrete impulse response of the filter is found to be:

hLIF [n] = (1− β)βn H[n]. (4.23)

For a spike occurring at discrete time niTs where the potential is reset to Vreset

and the noise influences only the next sample, (ni + 1)Ts, the discrete counterpart
of Eq. (3.61) can be written as:

V m[n] = hLIF [n] ∗
[
Vresetδ[n− ni] + Is[n] H[n− (ni + 1)] + σdξ[n] H[n− (ni + 1)]

]

= (1− β)βn H[n] ∗
[
Vresetδ[n− ni] + Is[n] H[n− (ni + 1)] + σdξ[n] H[n− (ni + 1)]

]

(4.24)
where σd is the discrete noise power (variance), and the discrete current amplitude
takes into account the membrane resistance. The discrete impulse response of the
filter, given by Eq. (4.23), is used here only for analysis purposes.

The mean trajectory of the potential and its variance can be calculated. Con-
sidering that after a spike the reset potential is drawn randomly from a probability
distribution with mean E{Vreset} = µVreset and variance E{[Vreset−µVreset ]

2} = σ2
Vreset

,
and that the discrete white noise process has the mean and discrete autocorrelation
function:

E{ξ[n]} = 0, E{ξ[n]ξ[n′]} = δ[n− n′], (4.25)
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the expected subthreshold potential trajectory is given by:

µVm [n] = E {Vm[n]}
= hLIF [n] ∗

[
Vresetδ[n− ni] + Is[n] H[n− (ni + 1)]

]

= (1− β)βn−niµVreset +
n∑

k=ni+1

βn−kIs[k].

(4.26)

while the variance of the membrane potential is given by:

σ2
Vm

[n] = E
{[

Vm[n]− µVm[n]
]2
}

= (1− β)2β2(n−ni)σ2
Vreset

+ (1− β)2σ2
d

n∑

k=ni+1

β2(n−k)

= (1− β)2β2(n−ni)σ2
Vreset

+ (1− β)2 1− β2(n−ni)

1− β2
σ2

d.

(4.27)

4.2.3. Model Tuning

The complete set of parameters of the dynamic model in Fig. 4.1 is composed by:

Θ′ = {asf , asb, Adf , Adb, Afdf , Afdb, Abdf , Abdb, β, σd, σVreset , Vθ, µVreset} . (4.28)

This set of parameters can be reduced since some parameters depend on others.
Namely, Vθ and µVreset are directly related with the integration time for a spike
generation, therefore changing their values is equivalent to change the gains of the
filters in the model. Also, changing the value of β is equivalent to change the shape of
the other filters, which have more degrees of freedom hence β could be kept constant.
Additionally, the value of σVreset does not greatly influence the potential trajectory
since it decays exponentially, as indicated by Eq. (4.27), and can be removed from
the set of parameters to tune. Therefore, the set of model’s parameters to be tuned
is:

Θ = {asf , asb, Adf , Adb, Afdf , Afdb, Abdf , Abdb, σd} , (4.29)

which is composed by the filter synthesis coefficients vectors/matrices and the discrete
input noise standard deviation. The non-trainable parameters were set to the values:
β = 0.9, σVreset = 0, Vθ = 1, and µVreset = 0.

A typical procedure used in the optimization of the parameters of neuron models is
to use maximum likelihood estimation, both in spiking neuron models [Paninski et al.,
2004; Mullowney and Iyengar, 2008], and Poisson neuron models [Pillow et al., 2005].
To optimize the parameters set, the likelihood of the parameters set Θ, given the
output spike sequence ρ[n] and the input stimuli s[n], is maximized in order to the
parameters:

Θopt = arg max
Θ

L
(
Θ|ρ[n], s[n]

)
, (4.30)

where L(Θ|ρ[n], s[n]) is the likelihood of the parameters set given the input stimuli
sequence s[n] and the output discrete neural function ρ[n], in terms of the set of
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parameters in Eq. (4.29). Since the logarithm is a monotonic increasing function,
the maximization of Eq. (4.30) is equivalent to maximize its logarithm:

Θopt = arg max
Θ

lnL
(
Θ|ρ[n], s[n]

)
. (4.31)

The discretization of the neural function in time bins with duration equal to the
sampling period Ts gives the discrete neural function (see Sec. B.1.2):

ρ[n] =
nspk∑

i=1

δ[n− ni], (4.32)

where ni are the time bins containing spikes, corresponding to the time instants niTs,
and nspk is the total number of spikes on the sequence.

To compute the probability of the generated spike sequence a Bayesian approach
is applied [Tomás and Sousa, 2007; Tomás, 2009]. Considering that the firing mech-
anism is a renewal process, so that the firing of a spike depends only on the firing of
the previous spike, as the SLIF model establishes, the probability to have a spike in
the time bin ni given that a spike was fired at ni−1 is:

P
(
spike at ni|spike at ni−1

)
=

= P
(
ρ[ni] = 1, ρ[ni − 1] = 0, . . . , ρ[ni−1 + 1] = 0 | ρ[ni−1] = 1

)

= P
(
ρ[ni] = 1 | ρ[ni − 1] = 0, . . . , ρ[ni−1 + 1] = 0, ρ[ni−1] = 1

)
×

ni−1∏

j=ni−1+1

P
(
ρ[j] = 0|ρ[j − 1] = 0, . . . , ρ[ni−1 + 1] = 0, ρ[ni−1] = 1

)

= P
(
ρ[ni] = 1 | ρ[ni−1] = 1

) ni−1∏

j=ni−1+1

P
(
ρ[j] = 0 | ρ[ni−1] = 1

)
.

(4.33)
The likelihood function for a spike train can be obtained from Eq. (4.33) considering
every spike interval. Considering that the neuron output is a renewal process, and
taking into account every spike in the output sequence, with a total of nspk spikes,
its likelihood is given by:

L
(
Θ|ρ[n], s[n]

)
=

nspk∏

i=1

P
(
ρ[ni] = 1 | ρ[ni−1] = 1

) ni−1∏

j=ni−1+1

P
(
ρ[j] = 0 | ρ[ni−1] = 1

)
,

(4.34)
where it is assumed that the neuron is at the reset state for n = 0, which is equivalent
to assume that the neuron fired a spike at n0 = −1. The log-likelihood is:

lnL
(
Θ|ρ[n], s[n]

)
= l

(
Θ|ρ[n], s[n]

)
=

nspk∑

i=1

ln P
(
ρ[ni] = 1 | ρ[ni−1] = 1

)

+
nspk∑

i=1

ni−1∑

j=ni−1+1

ln P
(
ρ[j] = 0 | ρ[ni−1] = 1

)
= .

(4.35)
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Since the neuron firing is obtained from the SLIF model description of the neuron,
the conditional probabilities P

(
ρ[n] = 0 | ρ[ni] = 1

)
, n > ni and P

(
ρ[n] = 1|ρ[ni] =

1
)
, n > ni, which are related by:

P
(
ρ[n] = 1 | ρ[ni] = 1

)
= 1− P

(
ρ[n] = 0 | ρ[ni] = 1

)
, ni+1 < n < ni, (4.36)

can be marginalized in relative to the membrane firing potential. The neuron fires a
spike whenever the potential Vm[n] reaches the threshold Vθ so that:

P
(
ρ[n] = 1 | Vm[n]

)
=

{
0, Vm[n] < Vθ

1, Vm[n] ≥ Vθ

= H
(
Vm[n]− Vθ

)
,

(4.37)

consequently: P
(
ρ[n] = 0 | Vm[n]

)
= 1 − P

(
ρ[n] = 1 | Vm[n]

)
= H

(
Vθ − Vm[n]

)
.

The spike nonoccurrence probability at the time instant nTs, given that the last
spike occurred at the time instant niTs, with n > ni, in terms of the subthreshold
potential is given by:

P
(
ρ[n] = 0 | ρ[ni] = 1

)
=

+∞∫

−∞
P
(
ρ[n] = 0 | Vm[n]

)
p
(
Vm[n]|ρ[ni] = 1

)
dVm[n]

=

+∞∫

−∞

(
1− H

(
Vm[n]− Vθ

))
p
(
Vm[n]|ρ[ni] = 1

)
dVm[n]

=

Vθ∫

−∞
p
(
Vm[n]|ρ[ni] = 1

)
dVm[n], n > ni.

(4.38)

In a SLIF model, with additive Gaussian white noise, the membrane potential follows
a Gaussian probability density with mean and variance given by Eq. (4.26) and
Eq. (4.27), respectively. Therefore Eq. (4.38) becomes:

P
(
ρ[n] = 0 | ρ[ni] = 1

)
=

Vθ∫

−∞
N(Vm[n]; µVm[n], σ2

Vm
[n]
)
dVm[n]

= Φ(Vθ; µVm[n], σ2
Vm

[n]
)
, n > ni.

(4.39)

where the mean µVm [n] and the variance σ2
Vm

[n] are functions of the model parame-
ters Θ.

The log-likelihood function in Eq. (4.35) can be maximized using a gradient as-
cent method or, equivalently, to the minimization of the negative log-likelihood by
a gradient descent method [Boyd and Vandenberghe, 2004]. Therefore, its deriva-
tives in relative to each component θk of the parameters set Θ must be obtained.
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4.2. A Static/Dynamic Retina Model

Applying Eq. (4.36) the derivative of Eq. (4.35) is:

∂l
(
Θ|ρ[n], s[n]

)

∂θk
=

nspk∑

i=1

− ∂
∂θk

P
(
ρ[ni] = 0 | ρ[ni−1] = 1

)

1− P
(
ρ[ni] = 0 | ρ[ni−1] = 1

)

+
nspk∑

i=1

ni−1∑

j=ni−1+1

∂
∂θk

P
(
ρ[j] = 0 | ρ[ni−1] = 1

)

P
(
ρ[j] = 0 | ρ[ni−1] = 1

) .

(4.40)

The derivative of the probability in Eq. (4.40) in relative to the parameters set can
be obtained using Eq. (4.39):

∂

∂θk

P
(
ρ[ni] = 0 | ρ[ni−1] = 1

)
=

Vθ∫

−∞

∂

∂θk

N(Vm[n]; µVm[n], σ2
Vm

[n]
)
dVm[n], (4.41)

where the mean and variance parameters depend on Θ such that

∂

∂θk
N
(
Vm[n]; µVm[n], σ2

Vm
[n]
)
=

∂

∂µVm

N
(
Vm[n]; µVm, σ2

Vm
[n]
)∂µVm

∂θk

+
∂

∂σVm

N
(
Vm[n]; µVm[n], σ2

Vm
[n]
)∂σVm

∂θk

(4.42)

where

∂

∂µVm

N
(
Vm[n]; µVm , σ2

Vm
[n]
)

= N
(
Vm[n]; µVm[n], σ2

Vm
[n]
) (Vm[n]− µVm[n]

σ2
Vm

[n]

)

= − ∂

∂Vm
N
(
Vm[n]; µVm[n], σ2

Vm
[n]
) (4.43)

and

∂

∂σVm

N(Vm[n]; µVm [n], σ2
Vm

[n]
)

= − 1

σ2
Vm

[n]
N(Vm[n]; µVm[n], σ2

Vm
[n]
)

+

(
Vm[n]− µVm [n]

)2

σ3
Vm

[n]
N(Vm[n]; µVm[n], σ2

Vm
[n]
)

= − ∂

∂Vm

(
Vm[n]− µVm[n]

σVm [n]
N(Vm[n]; µVm[n], σ2

Vm
[n]
))

.

(4.44)
Replacing Eq. (4.43) and Eq. (4.44) in Eq. (4.41) we get:

∂

∂θk
P
[
ρ[ni] = 0|ρ[ni−1] = 1

]
=

Vθ∫

−∞
− ∂

∂Vm[n]

[
N
(
Vm[n]; µVm [n], σ2

Vm
[n]
)∂µVm

∂θk

+
Vm[n]− µVm [n]

σVm [n]
N(Vm[n]; µVm[n], σ2

Vm
[n]
)∂σVm

∂θk

]
dVm[n]

= −N
(
Vθ; µVm[n], σ2

Vm
[n]
) [∂µVm

∂θk
+

Vθ − µVm[n]

σVm [n]

∂σVm

∂θk

]
,

(4.45)
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and

∂

∂θk
P
(
ρ[ni] = 1 | ρ[ni−1] = 1

)
= N

(
Vθ; µVm[n], σ2

Vm
[n]
) [∂µVm

∂θk
+

Vθ − µVm [n]

σVm [n]

∂σVm

∂θk

]
.

(4.46)
Together Eq. (4.40) and Eq. (4.45) in conjunction with the derivatives of the mean

and the variance in relative to the parameters set Θ permits using the gradient
ascent algorithm for optimization. The discrete mean of the membrane potential is
given by Eq. (4.26) while the deviation from the mean is given by Eq. (4.27). The
mean depends directly on the current Is given by Eq. (4.6) where the discrete static
current components are given by the expressions of Eq. (4.12a) and Eq. (4.12b), and
the forward dynamic component is given by Eq. (4.17) while the backward dynamic
component is computed from Eq. (4.19). The derivatives of the mean relative to each
parameter vector/matrix are given by

dµVm[n]

dθk
=

(
H[n− (ni + 1)]

dix[n]

dθk

)
∗ hLIF (4.47)

which have the expressions:

dµVm [n]

dasf
= B ∗ s[n] H[n− (ni + 1)] ∗ hIF (4.48a)

dµVm [n]

dasb

= B ∗ ρ[n− 1] H[n− (ni + 1)] ∗ hIF (4.48b)

dµVm [n]

dAdf
=
[
B ∗ s[n] H[n− (ni + 1)]

]
cT

df [n] ∗ hLIF (4.48c)

dµVm [n]

dAdb
=
[
B ∗ ρ[n− 1] H[n− (ni + 1)]

]
cT

db[n] ∗ hLIF (4.48d)

dµVm [n]

dAfdf

=
([

B ∗ s[n] H[n− (ni + 1)]
][

BAdf [n] ∗ s[n]
]T) ∗ hLIF (4.48e)

dµVm [n]

dAfdb
=
([

B ∗ ρ[n− 1] H[n− (ni + 1)]
][

BAdf [n] ∗ s[n]
]T) ∗ hLIF (4.48f)

dµVm [n]

dAbdf

=
([

B[n] ∗ s[n] H[n− (ni + 1)]
][

BAdb[n] ∗ s[n]
]T) ∗ hLIF (4.48g)

dµVm [n]

dAbdb
=
([

B[n] ∗ ρ[n− 1] H[n− (ni + 1)]
][

BAdb[n] ∗ ρ[n− 1]
]T) ∗ hLIF (4.48h)

1

σVm [n]

dσVm [n]

dσd

=
1

σd

. (4.48i)

Equation (4.48i) is the derivative of the membrane’s potential variance in order to
the noise power. Where, once again, the convolution of a matrix with a signal is
made by convolving every column of the matrix with the signal, which results in a
row vector.
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The IIR filter with impulse response Eq. (4.23) is implemented considering the
difference equation obtained by inverting the z-transform of Eq. (4.23) which leads
to the difference equation:

y[n] = βy[n− 1] + (1− β)x[n], (4.49)

considering the y[n] and x[n] as the output and input filter signals.
The static filters were initialized with the STA while the dynamic filters were ini-

tialized using the spike triggered covariance (STC) kernels. By performing a STA

analysis of the stimuli that elicited a spike, or set of spikes, the input filter waveform
is obtained (see Sec. B.1.3) [de Ruyter van Steveninck and Bialek, 1988]. The STA

is used to get a first approximation for this input linear filter [Chichilnisky, 2001;
Keat et al., 2001]. The impulse response of the static forward filter hsf is initialized
by synthesizing the STA waveform using the base functions through Eq. (4.9). The
static backward filter hsb was initialized by performing a spike-triggered average on
the spike history, which gives the most probable spike patterns that elicit new spikes.

The shape of the forward and backward dynamic filters can be initialized us-
ing spike triggered covariance analysis [Schwartz et al., 2002; Simoncelli et al., 2004].

The k components of the dynamic forward filter h
(k)
df can be initialized by performing

a principal component analysis (PCA) of the spike triggered covariance matrix (see

Sec. B.1.5), while the dynamic backward filter h
(k)
db can be initialized by performing

a PCA of the spike train autocorrelation matrix (see Sec. B.1.4), using excitatory
and/or inhibitory directions.

4.2.4. Experimental Results

To optimize the log-likelihood of the parameters set given the neural function and the
input stimuli, expressed by Eq. (4.40), where the derivatives of the probabilities are
given by Eq. (4.45) and Eq. (4.46), it was used the Matlab. The maximum likelihood
was obtained by optimization with the gradient descent as a function of Θ, where the
gradients in order to each model’s parameter are given by Eq. (4.48a) to Eq. (4.48i).
The model was discretized using a sampling period of Ts = 1 ms.

The training algorithm was implemented and tested to estimate the responses of
real rabbit retina ganglion cells. The data set consists of four trials of full field white
noise stimulus, where each trial has a duration of ≈ 50s with an average count of
6.58 spikes per second. While the stimuli values for these four trials is the same,
small differences exist in the stimulation time: on average stimulation changed with
a new random value at every 152 ms; the standard deviation of stimuli change was
238 ms. Section B.1.1 describes the apparatus used in the data acquisition. The
visual stimuli was normalized by subtracting its mean value and by dividing by its
standard deviation. Therefore, the resulting stimuli corresponding to the input s[n]
applied to the model is a sequence of normally distributed random values with zero
mean and unitary standard deviation.

To estimate the dynamic model, white noise analysis was initially performed were
the neuron memory was set to 300 ms. Since the model includes feedforward and
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Figure 4.2. Spike response of the dynamic and static model and response of rabbit RGC

(vertical lines represent the timing of the elicited spikes).

feedback dynamic mechanisms, STA and STC analysis were performed using both the
stimuli and the spike history. The static filters hsf and hsb in Fig. 4.1 were initialized
with the shape of the feedforward and of the feedback STA, respectively. Similarly
to what is done in the computation of the STA stimulus (see Fig. B.23), the feedback
STA is obtained by averaging all spike responses before a spike in a window with
300 ms.

The initial shape of the dynamic filters h
(k)
df and h

(k)
db were obtained using the first

5 excitatory directions extracted using PCA from the STC covariance and from the
cross-correlation between the training spike trains, respectively. Only excitatory di-
rections were used because the PCA analysis on the data showed no strong suppressive
directions. The modulating filters hfdf , hfdb, hbdf and hbdb were initially set to a small,
non-zero value.

To estimate the dynamic model, many basis functions can be used to describe the
linear filters. Typical examples are the Laguerre bases [Akçay and Ninness, 1999;
Tomás and Sousa, 2007] or sinusoidal basis [Keat et al., 2001]. However, these basis
functions are typically unable to describe delayed filters correctly and, for the used
data, it considerably deteriorated the results. Therefore simple Gaussian kernels were
used. Although not orthogonal, these basis functions allow a significative reduction
of the number of trainable parameters, whilst achieving good results. A total of 31
kernels were employed each separated by 10 ms, and having a standard deviation of
5.6 ms.

To analyze the relevance of the dynamic blocks relative to using the static com-
ponents only the performance of the complete dynamic model was compared to the
static model (the number of dynamic blocks in Fig. 4.1 was set to zero). The opti-
mization procedure used was the same for both the static and the dynamic model.
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Metric dtime(q = 50 s−1) dinter(q = 50 s−1) NMSE

Static Model

Training mean 420.54 317.69
0.882

trial std 10.39 7.05

All four mean 444.02 337.49
0.903

trials std 12.03 6.95

Dynamic Model

Training mean 251.63 242.62
0.625

trial std 22.13 21.71

All four mean 325.85 281.32
0.808

trials std 20.55 16.68

Table 4.1. Error measures between the outputs of the trained static/dynamic model and
real RGC responses.

One of the ganglion cells response trial was used for training. The other three were
used for comparison. Again, stimulation times are not exactly the same for all trials,
which leads to slightly different neuron responses.

For evaluating the performance of the models, 30 spike response trials were pro-
duced by using both the tuned static and dynamic models. In Fig. 4.2, the first 10
response trials obtained using the training data set are presented. The figure also
presents the real retina ganglion cell’s response. Examining the responses in Fig. 4.2
it can be observed that the static model is unable to model the structure of the
ganglion cell’s response. On the other hand, the dynamic model is able to accurately
reproduce the spike response pattern. However it does tend to fire 15% more spikes
than the ganglion cell (average on the four trials).

To assess the dynamic and the static retina models two error metrics termed spike
train metric and spike interval metric, that were proposed in [Victor and Purpura,
1997] are employed. These metrics are discussed more closely in Sec. 5.4. The former
metric, denoted by dtime(q), accounts for the cost associated with the absolute time
of occurrence of the neuronal events in each spike train (see Sec. 5.4.1), while the
latter metric is denoted by dinter(q) and accounts for the cost of changing the time
intervals between two spikes in a spike train (see Sec. 5.4.2). The parameter cost
for the time metrics was set to q = 50 s−1. The NMSE firing rate metric was also
applied (see Sec. 5.3.2). The firing rates where estimated for both the real and
the estimated data, by convolving their peri-stimulus time histogram (PSTH) with a
Gaussian window of zero mean and standard deviation of 20 ms.

The cross-evaluation between the models’ responses and the real ganglion cells
responses using the error metrics are presented in Table 4.1. The table shows the
results by comparing the model output with the training trial and with other 3 test
trials. The error values shows that the dynamic blocks are essencial to capture the
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Figure 4.3. Linear-Nonlinear-Poisson (LNP) model structure.

dynamics of real retina ganglion cells which cannot be described by a simple set of
feedforward and feedback static filters. This can be seen by noticing that the mean
values for all error metrics are much lower for the dynamic model than for the static
model. The dynamic model also tends to achieve a higher degree of variability than
the static model. However, this is due to the natural variability of the real RGC data.

4.3. A Multi Kernel LNP Model

Next a retina model based on the canonical LNP model is describes and analyzed
[Martins et al., 2007]. This retina model belongs to the firing rate class of models,
and employs both excitatory and inhibitory kernels obtained from the STA and STC

analysis of the RGC responses. The signals from the filtering of the stimulus with the
excitatory and suppressive kernels are then mapped through a set of nonlinearities –
polynomials whose order is chosen to optimize the output error – whose contributions
are summed and mapped through a logistic function to produce the firing rate. A
Poisson spiking mechanism is then added to generate the output spike train. The
structure of this model follows the LNP model structure depicted in Fig. 3.13.

There are several strategies used for the estimation of the parameters of retina mod-
els, like spike-triggered analysis [Chichilnisky, 2001; Rust et al., 2004], information-
theoretic approaches [Pillow and Simoncelli, 2006], and maximum-likelihood estima-
tion [Paninski et al., 2004; Pillow et al., 2005; Mullowney and Iyengar, 2008]. Fur-
thermore, along with this model an alternative strategy to estimate retina models is
presented, relying on additive logistic regression with generalized additive models.

4.3.1. Model Structure

The analysis of the responses of a spiking neuron obtained from its stimulation with
a stimuli sequence drawn randomly from an ensemble gives insightful information
about the stimulus subsets that elicited spikes [Rust et al., 2004]. From the analysis
of this stimulus subsets, generally termed spike-triggered analysis, it is possible to
characterize the neuron responses [Simoncelli et al., 2004], and was successfully ap-
plied in the development of retina models [Chichilnisky, 2001; Schwartz et al., 2002].
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For example, by averaging the subset of stimuli that elicited a spike one obtains
the STA, that is equal to the correlation of the firing rate with the input stimuli
(see Sec. B.1.3), which can be interpreted as the most probable stimulus that elicit a
spike. The STA provides an estimate for the first linear term in a polynomial series
expansion of the neuron response function. If the system is linear the STA provides
a complete characterization of the neuron [Rieke et al., 1997]. A simple but effective
retina model that uses the STA as the unique input linear filter in a LNP model was
described in Sec. 3.5.3 from [Chichilnisky, 2001]. A natural extension of the STA is to
analyze the STC matrix to disclose how and what are the stimuli variations preferred
by the neuron to generate a spike(s). The definition and computation of the STC

matrix is presented in Sec. B.1.5. The analysis of the STC matrix provides a set of
linear filters that describe better the subspace of stimuli that induces the neuron to
fire, rather than using the STA alone. In this model the contributions of the linear
filters resulting from the analysis of the STC matrix are used in conjunction with the
STA to model the retina.

This model follows the general structure of a LNP model depicted in Fig. 3.13.
However, the linear stage is extended to include several other characteristics of the
neuron response so that it becomes multidimensional, with dimension d, as depicted
in Fig. 4.3. Consequently, the nonlinear block is also multidimensional and combines
the filters’ outputs, which are individually processed by its respective nonlinear func-
tional, and whose sum is fed to a logistic function to produce the firing rate that
enters the Poisson spike generator. In the model’s structure depicted in Fig. 4.3, Xn

represents the vector of values at time instant n resulting from the convolution of
the stimulus vector sn, defined by Eq. (3.129), with the set of linear filters Ld. The
components of the vector Xn are then nonlinearly combined in the nonlinear block
to produce the firing rate rn, which is supplied to a Poisson spike generator.

The principal component analysis (PCA) of the STC matrix provides the directions
in the stimulus space along which the variance of the spike triggered ensemble differs
from that of the raw stimulus ensemble. The increase of the variance in a given
direction relatively to the raw stimuli indicates a stimulus dimension that is excita-
tory, while a decrease in variance relatively to the raw stimuli space indicates and
inhibitory direction. These directions can be obtained by the eigendecomposition
of the STC matrix in terms of eigenvectors/eigenvalues pairs by performing a PCA

analysis. The excitatory directions correspond to the eigenvectors along which the
eigenvalues are bigger than the respective values along the same eigenvectors for the
raw stimulus, while the inhibitory or suppressive directions are given by the eigen-
vectors whose eigenvalues are smaller than the ones for the same eigenvectors for
the raw stimulus [Rust et al., 2004]. In case the stimuli are driven from a Gaussian
distribution with a covariance matrix equal to the identity matrix then the raw stim-
ulus eigenvalues are all equal to unity, so that the excitatory STC matrix eigenvalues
are bigger than one, and the suppressive directions eigenvalues are smaller than one
while the remaining eigenvalues take values around one [Simoncelli et al., 2004].

The STC matrix, Cspk, defined by Eq. (B.54) in vectorial form, is a M ×M sym-
metric positive definite matrix, where M is the neuron memory in terms of time
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bins (the neuron time memory is equal to: M∆t). Therefore, after performing an
eigenanalysis the STC matrix can be decomposed as:

ΦspkΛspk = CspkΦspk, (4.50)

where Λspk is a diagonal matrix containing the eigenvalues {λk} of Cspk, which are
all real and positive, and Φspk is an orthogonal matrix whose columns are the eigen-
vectors {φk} of Cspk. This corresponds to the set of eigenvalues equations:

Cspkφk = λkφk, k = 1, . . . , M (4.51)

where (λk, φk), k = 1, . . . , M are the eigenvalue/eigenvector pairs, and M is the neu-
ron memory. The set of distinct vectors {φk}k=1,...,M forms an orthogonal basis along
which the STC can be expressed. To find the excitatory and suppressive stimulus
directions the eigenvalues between the raw stimulus covariance matrix, Cstim, and
the STC matrix should be compared. Since the raw stimulus covariance matrix may
not be equal to the identity matrix its projection along the STC eigenvectors is given
by the diagonal matrix:

Λstim = ΦT
spkCstimΦspk. (4.52)

The excitatory directions are given by the diagonal elements of the diagonal matrix
Λrat given by:

Λrat = ΛspkΛ−1
stim, (4.53)

which are bigger than one, while the suppressive or inhibitory directions are given by
the directions whose respective values are smaller than one [Schwartz et al., 2002].
Figure 4.4 displays the eigenvalues ratio between the STC and the raw stimulus
covariance matrix. The excitatory directions, for which the eigenvalues are greater
than one, are evident while there are many directions along which the covariance
matrix component’s are zero. The data used was the response of a salamander type-
ON RGC to Gaussian white noise stimulus displayed in Fig. B.17.

This model gives the firing rate, that is related to the firing probability as expressed
by Eq. (B.38), by a generalized additive model, where the predictors are the stim-
ulus projections along the STA and along the excitatory and suppressive directions
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4.3. A Multi Kernel LNP Model

extracted from the STC matrix. Additive models are used in statistics for modeling
the dependence of a random variable on various variables, or predictors [Hastie et al.,
2009].

In order to apply the logistic regression the spike train can be interpreted as a
realization of a binomial random variable that can have only two distinct values.
The discrete spike sequence at the time bin n takes the value ρ[n] = 1 for a spike
occurrence, and ρ[n] = 0 otherwise. Statistically speaking, we want to model the

probability of a spike occurring, P (ρ[n] = 1|Xn), where Xn =
[
xn1 xn2 . . . xnd

]T
,

where each component xnj, j = 1, . . . , d, is the stimulus projections along each one
of the d linear components, corresponding to excitatory and suppressive directions,
such that in vectorial terms we have:

Xn = LT
d sn, (4.54)

where the columns of the matrix Ld are the kernels’ vectors.
The logistic regression model is particularly suited to model the posterior proba-

bilities of classes of events. The logistic regression ensures that the probabilities sum
to one and remain bounded in the interval [0, 1]. Additionally, it sets constraints on
the distribution of the independent variables, that do not have to be normally dis-
tributed, linearly related, or have equal variance [Hastie et al., 2009]. In the logistic
regression the relationship between the predictor variables and the response is not
linear, instead it uses the logit transformation. While the linear logistic model as-
sumes that the logs-odds are linear, the general additive logistic regression replaces
each linear term by a more general term. The general additive logistic regression
model for the retina has the form:

logit (P (ρ[n] = 1|Xn)) = α +
d∑

j=1

fj(nnj), (4.55)

where d is the number of predictor variables used in the regression, specified in terms
of the log-odds or logit transformation. Contrary to the linear regression model,
in the generalized additive model the functions fj are general, possible nonlinear,
smooth functions, like basis functions, splines, or regular polynomials. The logit
function is defined by:

logit
(
P (ρ[n] = 1|Xn)

)
= ln

(
P (ρ[n] = 1|Xn)

P (ρ[n] = 0|Xn)

)
= ln

(
P (ρ[n] = 1|Xn)

1− P (ρ[n] = 1|Xn)

)
. (4.56)

By inverting the logit transformation we get the logistic or sigmoid function, such
that the probability of finding a spike at the time bin n is given by:

P (ρ[n] = 1|Xn) =
1

1 + exp
(
−
[
α +

∑d
j=1 fj(xnj)

]) , (4.57)

where the number of excitatory and suppressive kernels is d. We should note that
Eq. (4.57) has an expression for the firing rate similar to the one given by the escape
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4. Modeling the Retina

Algorithm 4.1 Local scoring algorithm for the generalized additive logistic regres-
sion model, GALRlocalScor.

1: N ← number of time bins
2: d← number of kernels/functions
3: xij , i = 1, . . . , N ; j = 1, . . . , d← predictor variables
4: ρi, i = 1, . . . , N ← spike train
5: α̂← ln

(
r/(1− r)

)
{r – spike-count rate}

r =
1

N

N∑

i=1

ρi

6: f̂ 1
j ← 0, j = 1, . . . , d {f̂ 1 = {f 1

1 , f 1
2 , . . . , f 1

d}}
7: repeat
8: f̂ 0

j ← f̂ 1
j

9: for i = 1 to N do

10: η̂i = α̂ +
d∑

j=1

f̂ 0
j (xij)

11: r̂i = 1/
[
1 + exp(−η̂i)

]

12: zi = η̂i +
(ρi − r̂i)

r̂i(1− r̂i)
{working target variable}

13: wi = r̂i(1− r̂i) {fitting weights}
14: end for
15: α̂, {f̂ 1

j }j=1,...,d ← GAMbackfitting(xij, zi, wi)

16: until ∆(f̂ 0, f̂ 1) =

∑d
j=1 ||f̂ 1

j − f̂ 0
j ||

∑d
j=1 ||f̂ 0

j ||
> ε {where ||fj||2 =

N∑

i=1

f 2
j (xij)}

17: return α̂, {f̂ 1
j }j=1,...,d

neuron models discussed in Sec. 3.3.4. The models parameters: α and the functions
fj(.), need to be optimized, and this can be done relying on the tools used on the
additive logistic regression.

4.3.2. Model Tuning

The spike train can be viewed as a sequence of events belonging to two distinct
classes. The discrete neural function, ρ[n], can take one of two distinct values at
each time bin: ρ[n] = 1 if a spike is fired or ρ[n] = 0 otherwise. The probability of a
spike occurrence at the time bin n is given by:

P
(
ρ[n] = 1|Xn

)
= r[n] ∆t, (4.58)

where r[n] is the discretized firing rate, and ∆t the width of the time bins (that is
normally equal to the sampling period Ts). Instead of a direct dependence on the
input stimulus, Eq. (4.57) expresses the probability of firing a spike as a function of
the projection of the stimulus sn along the kernels Ld, which are obtained from STA
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4.3. A Multi Kernel LNP Model

Algorithm 4.2 Backfitting algorithm for general logistic regression additive models,
GAMbackfitting.

1: xij , i = 1, . . . , N ; j = 1, . . . , d← predictor variables
{d – number of predictor variables/regression functions}

2: zi, i = 1, . . . , N ;← target variables
3: wi, i = 1, . . . , N ;← fitting weights
4: α̂← 1

N

∑N
i=1 zi

5: f̂j ← 0, j = 1, · · · , d
6: repeat
7: for j = 1 to d do {For all functions fj}

8: f̂j ← Sj

[
{xij ; zi−α̂−

d∑

k=1
k 6=j

f̂k(xik); wi}i=1,...,N

]
{Sj – weighting fitting operator}

9: end for

10: until
1

N

N∑

i=1

(
zi − α̂−

d∑

j=1

f̂j(xij)
)2

fails to decrease

11: return α̂, {f̂j}j=1,...,d

and from the PCA analysis of the STC matrix. Employing Eq. (4.57) the firing rate
of Fig. 4.3, at time instant n, is given by:

r[n] =
1

1 + exp
(
−
[
α +

∑d
j=1 fj(Xnj)

]) , (4.59)

using ∆t as the time unit. Therefore, the generalized additive logistic regression
model is:

ln

(
r[n]

1− r[n]

)
= α +

d∑

j=1

fj(Xnj), (4.60)

where the constant term α, and the chosen functions fj need to be adjusted given
the stimulus projections Xn, and the output firing rate r[n].

To tune the model the combination of a local scoring algorithm for additive lo-
gistic regression models with the backfitting algorithm for additive models is ap-
plied [Hastie and Tibshirani, 1990]. The local scoring algorithm starts by computing

an initial estimate for r[n] obtained by initializing the functions to zero, f̂j = 0, ∀j
and approximating α̂ with an initial estimate for the probability of a spike occur-
rence, such that r[n] = nspk/N , where nspk is the total number of spikes and N the
number of time bins, such that N = T/∆t. So r[n] = r∆t, where r is the mean
spike-count rate defined by Eq. (B.15). Therefore, the initial estimate for α̂ is:

α̂ = ln
(

r

1− r

)
, (4.61)

using ∆t as the time unit. In the local scoring algorithm for logistic regression the
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Figure 4.5. Additive logistic retina model. The linear filters components are depicted
along with the estimated nonlinear functions.

model is fitted to the modified regression target variable given by:

z[n] = α̂ +
d∑

i=1

f̂j

(
Xj [n]

)
+

(ρ[n]− r[n])

r[n]
(
1− r[n]

) , for n = 1, . . . N, (4.62)

with the regression weights w[n] = r[n]
(
1 − r[n]

)
. The steps of the local scoring

algorithm are presented in Algorithm 4.1. The functions fj are adjusted to z[n]
with weights w[n] using the weighted backfitting algorithm for additive models. The
weighted backfitting algorithm used in the local scoring algorithm is a general algo-
rithm that can fit an additive model using any regression-type fitting mechanisms
that supports weighting. Algorithm 4.2 describes the backfitting algorithm for fitting
the generalized additive model.

The nonlinear functionals used in Eq. (4.55) are of the polynomial type with the
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4.3. A Multi Kernel LNP Model

expression:

fj(x) =
Q∑

c=1

βc xc, (4.63)

where the coefficients β of the polynomial with degree Q are adjusted using a weighted
least squares polynomial fit in step 8 of the backfitting algorithm in Algorithm 4.2.
The zero order coefficients of each polynomial are imposed to be zero since the term
α in Eq. (4.60) takes the constant value into account. The retina model obtained
with this technique is displayed in Fig. 4.5.

An inhomogeneous Poisson process is used for the spike generation block that as-
sumes that the firing probability depends on the stimulus, and takes into account the
spike history by introducing an absolute and a relative refractory period, whose values
were previously calculated from the RGC responses following [Berry II and Meister,
1998].

4.3.3. Experimental Results

This model was implemented with a sampling period (and time bin width ∆t)
equal to Ts = 1 ms. The model was fitted and tested with the experimental data
from [Keat et al., 2001] depicted in Fig. B.17, that consists of 12 trials of a salaman-
der type-ON RGC responses to full field white noise stimulation. The trials have a
duration of 10s and an average count of 8.34 spikes/s. The data was split in time into
two groups, one for training (60%) and the other for testing (40%) purposes. From
the STA analysis of the data it was observed that the neuron memory extends to a
maximum of 400 ms, that was used as the time extension of the filters in the linear
block.

To assess the results of the model the spike time metric, from [Victor and Purpura,
1997], and described in Sec. 5.4.1, that accounts for the cost associated with the
absolute occurrence time of each spike is used. Additionally, to evaluate the firing
rate estimation by the model the NMSE, described in Sec. 5.3.2, was used.

The model performance was evaluated while maintaining the number of linear
components d in Eq. (4.55) fixed to d = 5 and observing the values for the NMSE

for different polynomial orders Q in Eq. (4.63). From the graphic in Fig. 4.6 it was
found that the best value for the polynomials’ order is Q = 3 since for higher orders
the model becomes overfitted. From the second graphic in Fig. 4.6 the minimum
value for the NMSE is obtained for the test data with d = 5. For bigger values of d
the model become overfitted to the train data. For d = 1 the linear block contains
only the STA filter kernel, and from the graphics Fig. 4.6 it becomes evident the
importance of the use of additional excitatory/suppressive kernels.

From the results displayed in Fig. 4.6 the values for Q and d, were chosen to be
Q = 3 and d = 5. Figure 4.7 displays the firing rate obtained from the real data and
the firing rate estimated by the model for the two time segments of the train and
test data.
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Figure 4.6. NMSE values for the train and test data sets with different values for the
order polynomial Q and number of linear components d.

The Fig. 4.5 displays the additive logistic model with the linear kernels waveforms
and the respective estimated nonlinear third order polynomials (Q = 3 and d = 5).
The nonlinear functionals provide information about the contribution of each linear
kernel giving some insight about the retina behavior when stimulated. From the
nonlinearities waveforms it is possible to identify immediately if the contribution of
each kernel to the retina response is excitatory or inhibitory.

Applying the firing rate estimate to a Poisson spike generator a set of spike trains
are generated. Figure 4.8 displays a set of spike trains generated by the model and
the spikes produced by the RGC. The spike time metric with q = 50s−1 was used
to compare the the real data spike trains with the ones produced by the model.
Table 4.2 displays the results obtained with the NMSE and the spike time error for
the train and test data. The results for the NMSE shows that there is still some
overfitting of the training data relative to the test data. However, the results are
comparable with the ones obtained with other models, namely the dynamic model
discussed in Sec. 4.2. The spike trains are very regular in time for this data so the
spike time metric give small error both for the train and test data when compared
to the dynamic model.

Train Data Test Data
NMSE 0.389 0.561

Observed Inter-trial 37.49 36.55
dtime

q=50s−1 Estimated Inter-trial 68.48 71.96

Cross-trial 75.32 80.65

Table 4.2. Error measures for the generalized additive retina model.

116



4.4. Poisson Based Firing Rate Models versus SLIF Models

F
ir

in
g

R
at

e
[s

p
ik

es
/∆

t]

F
ir

in
g

R
at

e
[s

p
ik

es
/∆

t]

Observed Observed

Estimated Estimated

t [s]t [s]

Train data Test data

1.81.61.41.2

11

1

0.80.8

0.60.6

0.40.4

0.20.2

00

2 8 8.2 8.4 8.6 8.8 9

Figure 4.7. Firing rate comparison between the observed and estimated with the multi
kernel model for the train and test data.

4.4. Poisson Based Firing Rate Models versus

Stochastic Integrate-and-Fire Models

The retina models based on the Poisson firing mechanism, like the one described in
Sec. 3.5.3 and the SLIF model, described in Sec. 3.3.4, have a straight relationship
and can even be considered identical under certain conditions [Tomás et al., 2008].

The membrane potential of the SLIF is given by Eq. (3.61). Due to the noise the
value of the membrane potential cannot be exactly determined for t > ti, the most
that can be done is to calculate its probability density: p(Vm(t), t). This probability
density can be obtained as the solution of the partial differential equation:

τm
∂

∂t
p(Vm(t), t) = − ∂

∂t
[−Vm(t) + RmIs(t)] p(Vm(t), t)+

1

2
σ2

ξ (t)
∂2

∂t2
p(Vm(t), t) (4.64)

where σ2
ξ (t) is the time dependent noise variance, with the firing threshold as a

boundary condition p(Vθ, t) = 0, ∀t. Equation (4.64) is a Fokker-Planck equation that
describes the time evolution of the probability density [Gerstner and Kistler, 2002].
The solution of this Fokker-Planck equation with the initial condition p(Vm(t), ti) =
δ(Vm(ti) − Vθ) gives a Gaussian probability density with mean µVm(t) and variance
σ2

Vm
(t):

p(Vm(t), t) =
1√

2πσ2
Vm

(t)
exp

(
− [Vm(t)− µVm(t)]2

2σ2
Vm

(t)

)
, (4.65)

where µVm(t) and σ2
Vm

(t) are given by Eq. (3.64) and Eq. (3.65) respectively. The
probability density of Eq. (4.65) varies continuously with time and with the value of
the membrane potential along its course.
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Figure 4.8. Spike response of the additive logistic retina model.

The probability that the neuron fires a spike at the time instant t is given by:

P
(
spike at t|Vm(t), t

)
= P

(
Vm(t) > Vθ, t

)

= 1−
Vθ∫

−∞
p(Vm(t), t)dVm(t)

= 1− Φ(Vθ|µVm(t), σ2
Vm

(t))

= 1− Φ(Vθ − µVm(t)|0, σ2
Vm

(t))

= 1− Φ(−µVm(t)|Vθ, σ2
Vm

(t))

= Φ(µVm(t)|Vθ, σ2
Vm

(t)).

(4.66)

The function Φ(x, µ, σ2) is the normal cumulative density function with mean µ and
variance σ2 defined by:

Φ(x|µ, σ2) =
1√
2π

x∫

−∞
e− (t−µ)2

2σ2 dt

=
1√
2π

(x−µ)/σ∫

−∞
e− t2

2 dt

= Φ
(

x− µ

σ

)
,

(4.67)

where the last equality shows the relation with the standard normal CDF. The last
expression in Eq. (4.66) is identical to the generator potential mapping of Eq. (3.141)
made in the white noise model to obtain the firing rate from the generator potential,
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corresponding to a sigmoid. This expression is also similar to the logistic function
of Eq. (4.59), which gives the firing rate as a function of the predictor variables in
the generalized additive logistic regression model of the retina. For the SLIF model
the slope of the sigmoid is controlled by the variance σ2

Vm
(t) and the mean value Vθ

controls the positioning of the sigmoid.

Furthermore, if we allow the reset potential to be set randomly with a given vari-
ance we can control the time evolution shape of the sigmoid. For a reset potential
with variance σVreset the expression for the variance of the membrane potential tra-
jectory of the SLIF model, described in Sec. 3.3.4, given by Eq. (3.65), takes the form:

σ2
Vm

(t) =
σ2

ξ

2
+

(
σVreset −

σ2
ξ

2

)
e−2

t−ti
τm . (4.68)

Although the value of the deviation converges to the limit case of Eq. (3.66), three
cases can be distinguished for the initial shape of the sigmoid taking into account
the relative values for the variances of the reset potential and input noise: for i)
σ2

Vreset
= σ2

ξ /2 the shape of the sigmoid is kept along the integration period; while if
ii) σ2

Vreset
< σ2

ξ /2 the initial deviation from the mean trajectory is σVreset and grows

exponentially with time to σξ/
√

2; and if iii) σ2
Vreset

> σ2
ξ /2 the membrane potential

deviation from the mean trajectory starts in σVreset and decreases exponentially to
σξ/
√

2.

4.5. Conclusions

This chapter presented and discussed two novel retina models. The first model de-
scribed belongs to the spiking neuron class of models, and the second one is a firing
rate class’ model.

The spiking neuron model has two versions which were analyzed. The first version
has only a static structure, while a second version of the model includes the static
plus a dynamic structure. The comparison between the performances of the static
and dynamic versions for this model allows to conclude about the importance of
the dynamic blocks in retina modeling. Using the stimulus and the spike history
to modulate an additional dynamic contribution from filtering the stimulus and the
spike train decreased the model’s errors significantly in relation to the static version.
These results emphasize the importance of dynamic mechanisms in modeling the
response of the retina.

The second model introduced is a multi kernel linear-nonlinear-Poisson. This
model follows a generalized additive logistics regression modeling of the retina re-
sponse, and it shows the importance of the use of more than the STA filter in the
linear block, and that the use of excitatory and suppressive kernels improves the esti-
mation of the firing rate. This model introduces the use additive logistic regression in
conjunction with the generalized additive models in retina modeling that showed to
be effective in the estimation of the nonlinear effects in the LNP model, and permits
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to identify immediately the effect of each linear filter as being excitatory or suppres-
sive. Additionally, this modeling technique easily allows the inclusion and removal
of the excitatory and suppressive kernels in the modeling and analysis of the retina
response.

This chapter ended with an analytical comparison between Poisson based firing
rate models and spiking models. Based on the stochastic integrate-and-fire model
and a Poisson based firing rate models, it was shown that these two types of models
are closely related by comparing their spike generation probability functions.
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The purpose of computing is insight, not numbers.

Hamming, R. W. (1987). Numerical Methods for

Scientists and Engineers. Dover Publications,
second edition

5
Neural Activity Metrics

5.1. Introduction

T
he selection of a retina model is an indispensable task in the development
of a bioelectronic vision system. Therefore, to make a rational choice it is
important to measure the performance of the different available models, and

consequently there is the need of a metric, or set of metrics. Even in the analysis of
natural neural responses it is useful in many situations to evaluate and compare the
reliability of the spike sequences.

Several neural metrics have been proposed to analyze neural responses, and to
tune and evaluate neural models. The neural metrics are sensitive to different char-
acteristics of the neural code, and can be grouped in distinct classes according to the
firing rate or time-code perspective. These metrics should be closely related to neu-
ral code supposedly used by the actual neuron. The neural metrics can be classified
as belonging to one of the classes: firing rate metrics, spike train metrics or firing
eventmetrics.

Many of the neural metrics proposed in the literature have been developed with the
purpose of studying particular aspects of the neural code or to compare the responses
of specific neural systems. Therefore, these metrics are mainly used in particular
situations; their application is not generalized and, in many cases, no quantitative
measurements are provided for their performance. In the search to solve this problem,
a set of neural code metrics is herein presented with a unified perspective, i.e., both
for the tuning and assessment of neural retina models and by performing a direct
comparison of neural responses. The application of these metrics should be wisely
made, since some of these metrics include parameters that regulate their sensitivity,
so that the incorrect selection of its values can lead, for example, to consider that two
completely different neural responses are similar, or that two responses of the same
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neuron to the same input stimulus are far apart. In some cases, the metrics do not
directly compare the neural responses. Instead these responses are transformed first
into a point in the metric’s domain. By applying an incorrect transformation, i.e., by
incorrectly estimating the point in the metric’s domain, a bias can be introduced in
the analysis. The application of neural code metrics in the tuning of neural models
must also be done judiciously. The incorrect choice of the metric’s parameters in the
tuning of a model affects the quality of its output, as not all metrics are suitable for
neuron model tuning.

This chapter describes the application of the metrics to compare real retina neural
responses, and to train models, with the purpose of revealing their constraints. To
emphasize the use of the metrics and to reveal their advantages and drawbacks,
two different sets of retina neural responses are used. The application of the neural
metrics to retina neural responses allows us to draw conclusions about the choice
of its parameters and their use in the tuning and assessment of retina models. The
most relevant results were published in [Martins et al., 2009].

After introducing the concept of a metric, several metrics used to compare spike
trains, firing rates, and sets of spike trains, are described and their main charac-
teristics discussed. Afterwards, the metrics are applied to tune and assess a set of
canonical retina models with the goal of comparing their performances, and providing
relevant guidelines for their usage.

5.2. The Definition of Metric

A metric is a function, d, that maps a pair of points, x, y ∈ S, of a vectorial space
S, to a nonnegative real number representing the distance between these two points:
d : S2 → R

+
0 . To be regarded as a metric in the mathematical sense the distance

function d(x, y) must have the properties ∀x, y ∈ S:

d(x, y) ≥ 0, where d(x, y) = 0⇒ x = y, (5.1)

d(x, y) = d(y, x), (5.2)

d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality). (5.3)

An example of a common metric is the Euclidian distance defined in the Rn Euclidian
space. The Euclidian distance corresponds to the distance between two n-dimensional
points with coordinates x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), defined by
d : Rn × R

n → R
+
0 as:

d(x, y) =
√

(y1 − x1)2 + (y2 − x2)2 + · · ·+ (yn − xn)2 .

However, the neural response cannot be represented as a vector on the real space,
therefore a suitable set of metrics have been devised. Different metrics and error
measures have been proposed to evaluate the performance of neuronal models and
to analyze neuronal activity. Some of these distance measures clearly depart from
the straight mathematical definition of a metric since they do not possess some of
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Figure 5.1. Comparison of two firing rates.

the properties enumerated in Eq. (5.1)–Eq. (5.3), though they are used as a distance
measure between neural responses.

The different perspectives of the neural code led to the development of several
metrics that can be classified into three distinct classes: i) firing rate metrics,
which compare firing rates; ii) spike train metrics, that compare directly two spike
trains; and iii) spike events metric, which measure the (dis)similarity between bursts
of spikes within two sets of spike trains. These metrics look to the neural code
from different perspectives (see Sec. 3.2), and each one weighs differently a set of
characteristics of the neural response.

5.3. Firing Rate Metrics

Firing rate metrics measure the distance, or error, between two sets of spike trains by
comparing their mean firing rates. Because these rates (number of elicited spikes per
second) are not known a priori, they must be estimated from the neural responses.
To estimate the mean number of elicited spikes per second, time is discretized into
small time bins, and the rate is computed as the number of spikes found in each
time bin normalized by the discretization period. To further improve the estimation,
multiple trials obtained under similar conditions (i.e., with the same stimulus) are
typically used:

r̂[n] =
1

M

M∑

j=1

1

∆t

n∆t+ ∆t
2∫

n∆t− ∆t
2

ρj(t)dt

︸ ︷︷ ︸
Number of spikes in bin n

(5.4)

where n is the time bin number, ∆t is the discretization period and M represents
the number of spike trains used to estimate the firing rate. In Eq. (5.4) it is assumed
that the sampling occurs in the middle of the time bin. The firing rate calculated
from Eq. (5.4) can be plotted as a histogram (see Fig. 5.5a), which is usually known
as the peristimulus time histogram (PSTH). If an infinitesimally small time bin is
used in Eq. (5.4), the estimated firing rate is given by the ensemble average of the
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neural response functions:

r̂(t) =
1

M

M∑

j=1

ρj(t) . (5.5)

As the size of the time bin, ∆t, in Eq. (5.4) decreases the firing rate becomes
sharper. The major problem with the use of an extremely small discretization period
is that the rate becomes impulsive, leading to large errors both when the error metrics
are applied to compare different neural responses and when the objective is to tune
the parameters of a model. This problem becomes more relevant when the number
of trials available to compute the ensemble average is small.

Typically, to overcome this problem, some type of low pass filtering is applied
to the ensemble average [Berry et al., 1997; Ventura et al., 2002], where the most
common method is to convolve it with a Gaussian function g(t; σ) with zero mean
and standard deviation σ:

r̂(t) =
1

M

M∑

j=1

ρj(t) ∗ g(t; σ) . (5.6)

The drawback of the application of a low pass filter is that it attenuates high fre-
quency components that may exist in the true firing rate r(t). Thus, in the specific
case of Eq. (5.6), the Gaussian parameter σ must be chosen carefully so that the
ensemble average is smoothed without removing important information about the
firing rate. In fact, it is known that there exists an optimal value for the σ pa-
rameter that leads to the minimum error between the true and the estimated firing
rates [Nawrot et al., 1999]. A method suggested to compute the Gaussian standard
deviation is by making it equal to the time scale of the modulations in the firing
rate [Berry et al., 1997]. This method generally selects an acceptable value for σ, al-
though it ignores the number of trials used in the ensemble average. Another method
to estimate σ is based on the optimization of the mean-squared-error between the
estimated and the true firing rate [Shimazaki and Shinomoto, 2010].

The firing rate metrics are well suited for the analysis of rate code models. In the
assessment of neuron models the comparison of two firing rates comprises a reference
firing rate, usually obtained from the responses of a retinal neuron, and an estimated
firing rate, corresponding to the model output.

5.3.1. Mean Squared Error

The mean squared error is a common metric in engineering that is also used in
neuroscience in the comparison of firing rates. Given two firing rates r(t) and r̂(t)
the distance following the mean squared error (MSE) between the two firing rates is
obtained from:

MSE(r, r̂) = E{[r(t)− r̂(t)]2} =
1

T

T∫

0

[r(t)− r̂(t)]2dt, (5.7)
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where r̂(t) is the firing rate that is compared with the reference firing rate r(t)
during the interval of time T . The first equality in Eq. (5.7) denotes the expectation
operator E . In the case of an ergodic process a time average can be used instead of
the ensemble average [Papoulis and Pillai, 2002; Therrien, 1992].

For actual data analysis the firing rate is discretized in time so that the MSE is
obtained from

MSE(r, r̂) =
1

N

N−1∑

n=0

(r[n]− r̂[n])2 , (5.8)

where N is the number of time bins into which the spike trains were discretized.

5.3.2. Normalized Mean Squared Error

Another statistic used to measure how well a given model captures the fast mod-
ulations in the observed firing rate is obtained by dividing the MSE by the vari-
ance1 of the observed firing rate. This statistic is called normalized mean squared
error [Berry II and Meister, 1998]. The normalized mean squared error (NMSE) is
defined by:

NMSE(r, r̂) =
MSE(r, r̂)

VAR(r)
=

T∫
0
[r(t)− r̂(t)]2dt

T∫
0
[r(t)− 〈r〉]2dt

. (5.9)

When the firing rate is discretized into time bins of finite length, the expression
for the NMSE can be written as:

NMSE(r, r̂) =

N−1∑
n=0

(r[n]− r̂[n])2

N−1∑
n=0

(r[n]− 〈r〉)2
, (5.10)

where 〈r〉 is the average reference firing rate. This error measure violates the metric
properties in Eq. (5.2) and Eq. (5.3) due to the biased denominator term.

5.3.3. Percent Variance Accounted For

Another error measure with an expression just slightly different from the NMSE is
the percent-Variance-Accounted-For. The percent-Variance-Accounted-For (%VAF)
was originally proposed to evaluate how well a model describes a biological system in
terms of the firing rate [Westwick and Kearney, 2003; Pillow et al., 2005]. In terms
of the firing rate, the %VAF compares the observed firing rate r(t) with the estimated

1VAR(x) = E{(x− µx)2} = E{x2} − µ2
x, where µx = E{x}.
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firing rate r̂(t) using the expression:

%VAF(r, r̂) = 100× VAR(r − r̂)

VAR(r)

= 100× E{[(r(t)− r̂(t))− (〈r〉 − 〈r̂〉)]2}
E{[r(t)− 〈r〉]2} ,

(5.11)

where the quantities between angle brackets are the mean firing rates of the observed
and predicted trains that are calculated using Eq. (B.37). Expanding the expectation
operator in Eq. (5.11), the %VAF becomes:

%VAF(r, r̂) =

100× E{r2(t)}+ E{r̂2(t)} − 〈r〉2 − 〈r̂〉2 + 2〈r〉〈r̂〉 − 2E{r(t)r̂(t)}
E{r2(t)} − 〈r〉2 ,

(5.12)

where the last term in the numerator of Eq. (5.12) is the correlation between the
observed and the estimated firing rates. If the two processes are independent, then
E{r(t)r̂(t)} = E{r(t)}E{r̂(t)} = 〈r〉〈r̂〉, and the last two terms in the numerator
of Eq. (5.12) cancel each other. In this case, the two firing rates are uncorrelated,
and the %VAF reduces to the sum of the variances of the observed and estimated
firing rates normalized by the variance of the reference firing rate.

For a firing rate discretized into N time bins, the %VAF reduces to the expression:

%VAF(r, r̂) = 100×
1
N

N−1∑
n=0

r2[n] + 1
N

N−1∑
n=0

r̂2[n]− 〈r〉2 − 〈r̂〉2 + 2
(
〈r〉〈r̂〉 − 1

N

N−1∑
n=0

r[n]r̂[n]
)

1
N

N−1∑
n=0

r2[n]− 〈r〉2
.

(5.13)

Using the discrete variance operator the expression for the %VAF metric can simply
be written as:

%VAF = 100× VAR(r[n]− r̂[n])

VAR(r[n])
. (5.14)

The biased term in the denominator of Eq. (5.11) leads this error measure to
violate Eq. (5.2) and Eq. (5.3).

5.3.4. Analysis of the Firing Rate Metrics

For the evaluation of the metrics two data sets resulting from the measurement of real
retina responses were employed. The first set, provided by Prof. Eduardo Fernaández
[Unidad de Neuroprótesis y Rehabilitación Visual, 2008], was obtained by recording
the responses of a type-ON rabbit retina RGC when stimulated with a full-field ON-
OFF stimulus. This data corresponds to 13 trials from a single neuron, each lasting
four seconds, with an average of 62 spikes per trial (see Fig. 5.2). The second set of
data, from [Keat et al., 2001] and provided by Prof. Markus Meister, corresponds to

126



5.3. Firing Rate Metrics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

t [s]

R
ed

u
ce

d
S
ti

m
u
lu

s
In

te
n
si

ty

(a) Flash stimulus (or ON-OFF).

1

2

3

4

5

6

7

8

9

10

11

12

13

0 0.5 1 1.5 2 2.5 3 3.5 4
t [s]

T
ri

al
n
u
m

b
er

(b) Rabbit type-ON RGC spike trains.

Figure 5.2. Rabbit type-ON RGC responses for a ON-OFF full-field stimulus (Ts =
1 ms).

the recording of salamander type-ON RGC responses when stimulated by a sampled
white noise spatially uniform stimulus. The 12 trials of responses are from a single
neuron, where each trial lasts a total of 10s and has an average of 83 spikes per trial
(see Fig. 5.3). The RGC neural functions and the stimuli were sampled with a period
of Ts = 1ms.

The main drawback in the usage of the firing rate metrics is that, given a set of
neural responses, one does not know the mean firing rate of these responses. Instead,
this rate must be estimated, which naturally leads to additional bias sources when
the rate metrics are applied.

Figure 5.4 displays the firing rate error measures for the different metrics for the
salamander type-ON RGC as a function of the Gaussian smoothing filter width. The
values in the figure were obtained by i) dividing the 12 available trials into two sets
of 6 trials; ii) estimating the firing rates by convolving the two ensemble averages
with a Gaussian function with zero mean and standard deviation σ; and iii) applying
the MSE, NMSE and %VAF. To obtain the mean and standard deviation values, all
possible combinations of trials were considered. The curves in Fig. 5.4 show that
if no smoothing is applied, σ = 0 s, the error is very large, even though the cell
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(a) White noise stimulus.
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(b) Salamander type-ON RGC spike trains.

Figure 5.3. Salamander type-ON RGC responses for sampled white-noise full-field stim-
ulus (Ts = 1 ms).
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Figure 5.4. Inter-trials evaluation of salamander RGC responses varying the standard
deviation values of the Gaussian smoothing function (line – mean value; shaded area –
mean ± standard deviation).

is always encoding the same stimulus. This shows that some smoothing must be
done in order to have a reasonable estimation of the firing rates. However, the larger
the smoothing parameter σ, the more the high frequency components are attenuated,
possibly hiding the true characteristics of the responses’ firing rate. This is illustrated
by the NMSE and %VAF curves. If the rates are over-smoothed, the temporal variance
becomes too low and the error values start to increase. Between these two extremes,
the values σ ∈[15 ms; 30 ms] is defined with the minimum errors for the NMSE; this
region also defines the values for the smoothing parameter, which should be used to
estimate the firing rate.

The above procedure for estimating the value for the smoothing parameter σ can
be generalized to other neural responses. To determine an appropriate value for
this smoothing parameter, one can perform the inter-trial evaluation of a neuron’s
responses with the NMSE metric using different values of σ. This will define the range
of values that can be used for the parameter σ. It should be noted that if the number
of trials used in the ensemble average is large, the firing rate estimation is better,
and the minimum moves towards a lower value of σ. Therefore, this technique has an
advantage over the one proposed by Berry, et al. [Berry et al., 1997]: as the number
of trials used in the ensemble average increases (which improves the estimation of
the firing rate), the chosen value for σ decreases.

From the analysis of the %VAF metric it can be concluded that it should not be
used to evaluate neural responses. By expanding the %VAF expression in Eq. (5.11)
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one gets::

%VAF(r, r̂) = 100× VAR[r(t)− r̂(t)]

VAR[r(t)]

= 100× E{(r(t)− r̂(t))2} − E2{r(t)− r̂(t)}
VAR[r(t)]

= 100×




NMSE(r, r̂)︸ ︷︷ ︸
T1

− (E{r(t)} − E{r̂(t)})2

VAR[r(t)]︸ ︷︷ ︸
T2




,

(5.15)

which states that the %VAF metric consists of a term T1 proportional to the NMSE

metric minus a term T2 that increases with the difference of the mean firing rates.
This expansion shows a higher difference in the mean temporal values of the rates
indicates a lower %VAF error so that the second term is undesirable. Because the
removal of the second term results in the NMSE metric, one concludes that the %VAF

metric adds no information in the evaluation of neural responses relatively to the
NMSE metric.

Table 5.1 contains the values obtained by applying the firing rate metrics to the
salamander ON-type RGC responses. These values were obtained by composing and
comparing different sets of spike trains from the set of 12 trials shown in Fig. 5.3b,
with each set composed by 6 trials. A Monte-Carlo method was used to randomly
select 6 trials among the 12 trials to compose the sets of spike trains to be com-
pared. From these results it is possible to observe noticeable differences between the
values of the MSE and its normalized version, the NMSE, and also between the use
of straight PSTH and the smoothed PSTH. The PSTH was smoothed with a gaussian
filter with a standard deviation σ that was computed using the Algorithm 5.3. To
be considered to have a good performance in terms of the firing rate metrics the
errors of a model should be within the range given by the values in Table 5.1 for this
particular σ.

Another important characteristic of the firing rate metrics is their sensitivity to
phase (time shift). That is, by comparing two sets of spike trains whose only differ-
ence is a shift in the time occurrence of the peaks in their firing rates the error will be
significant. This error could be even lower if the metric is applied to compare a firing
rate obtained from a set of spike trains and a firing rate equal to zero, which is not a
desirable result. Figure 5.5 displays the firing rates for two different sets of trials from
the twelve trains, and it can be observed from Fig. 5.5a that the non smoothed PSTH

has big amplitude peaks so that a shift in the phase would result in a large jump
in the error value. For the smoothed PSTHs of Fig. 5.5b the peaks’ amplitudes are
smaller and spread, so a phase shift only leads to a more moderate increase in the
error, (one must recall that the integral of the straight and of the smoothed PSTHs
are equal, so that the difference for the metrics values is due to phase errors only).
Therefore, the values in Table 5.1 obtained with the smoothed PSTHs are much lower
precisely because smoothing decreases the errors due to phase differences.
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Firing Rate Metrics
Straight PSTH

Metric mean ± std min max
MSE 2454.6± 138.2447 2041.7 2875.0

NMSE 1.1450± 0.0542 0.9833 1.3234
%VAF 114.4976± 5.4213 98.3281 132.3359

Smoothed PSTH
Metric mean ± std min max
MSE 8.0686± 1.1295 5.5717 12.1673

NMSE 0.0593± 0.0088 0.0405 0.0951
%VAF 5.9054± 0.8836 4.0269 9.5090

Table 5.1. Values of the firing rate metrics applied to the salamander ON-type RGC
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Figure 5.5. Comparing smoothed and non-smoothed PSTHs.

5.4. Spike Train Metrics

Spike train metrics measure directly the distance between two spike trains. These
metrics are particularly suited for the assessment of time-code models by measuring
the distance, or (dis)similarity, between the spike trains from a neuron and the ones
predicted by a model. Three suitable metrics that can be found in the literature are:
the spike time metric, the interspike interval metric, and the spike distance metric.
For these metrics each point on the metric space S is the neuronal response ρ(t), and
it gives the distance between the spike trains ρ1(t) and ρ2(t), composed of the spikes
at time instants t1,1, t1,2, . . . , t1,n1 and t2,1, t2,2, . . . , t2,n2, respectively, as depicted in
Fig. 5.6.
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Figure 5.6. Comparison of two spike trains.

5.4.1. Spike Time Metric

A pair of spike train metrics were proposed in [Victor and Purpura, 1996, 1997], and
revisited in [Victor, 2005]. These metrics consider the spike trains as points in a vector
space, and the metric is applied to calculate their distance. They include the spike
time metric, denoted here by dtime(·), which considers the absolute time occurrence
of the individual spikes in a train as the significant quantity that distinguishes two
spike trains.

The distance between the spike trains ρ1(t) and ρ2(t) is measured as the minimum
cost path followed to transform one spike train into the other by iteratively applying
a set of elementary operations. The cost to transform a spike train ρi(t) into ρj(t),
like the ones depicted in Fig. 5.6 (where i = 1 and j = 2), denoted by the distance

d
(
ρi(t), ρj(t)

)
, is equal to the sum of the individual costs associated with a partic-

ular sequence of elementary steps that successively transform the spike train ρi(t)
into ρj(t):

d
(
ρi(t), ρj(t)

)
= min

{
d
(
ρi(t), ρi+1(t)

)
+ · · ·+ d

(
ρj−1(t), ρj(t)

)}
, (5.16)

where the difference between ρi(t) and ρi+1(t) corresponds to a single elementary
operation. The minimum is calculated over all possible paths of spike trains, ρi(t),
ρi+1(t), . . . , ρj−1(t), ρj(t), beginning in ρi(t) and ending at ρj(t).

The metric dtime(·) is a function of a parameter q that measures its sensitivity
to the timing of the spikes occurrence. The allowed elementary steps are: i) the
insertion and ii) the deletion of an individual spike, both of these operations have
a unitary cost per spike; and iii) the shift in the time occurrence of a spike, with
a cost of q per second, which leads to a cost of q|∆t| for a shift of ∆t seconds on
the occurrence of a spike. The further away a spike is relative to the correspondent
spike on the other train, the more costly it is to shift the spike to the right place.
The shifting of a spike can be so costly that it can be less costly to delete it and
raise another spike coincident with the comparing spike, which has a total cost of 2
(dtime(spike delete + spike raise) = 2).

Extending the previous reasoning two antipodal limit cases are found. The first
case occurs when q = 0, meaning that the shifting of a spike is costless, so that
the contributions to the cost are due only to the deletion or raising of spikes. If
the spike train ρ1(t), with n1 spikes, is being compared with the spike train ρ2(t),
with n2 spikes, the minimum path to transform one spike train into the other can
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Figure 5.7. Spike train transformation in the spike time metric.

be done with |n1 − n2| steps by creating (or deleting) a spike at each step with a
cost of |n1−n2|. This corresponds to a spike-count metric, dtime

q=0 (·) = dcount(·), where
the single relevant characteristic of the spike trains is its total number of spikes.
According to dcount, two spike trains with the same number of spikes have an error
equal to zero, although the spikes can be positioned at different time instants.

The second extreme case occurs when q takes a high value. Considering two spike
trains with a single spike each positioned at times t and t′, respectively, the cost for
shifting the spike to the right place is dtime

(
ρ1(t), ρ2(t)

)
= q|t− t′|. The alternative

path is to delete the spike at the time instant t and create another spike at time t′,
which has a total cost of 2. The latter path can be less costly than the former if
|t− t′| > 2/q. When q is very high, (q → ∞) the distance between two spike trains
ρ1(t) and ρ2(t) is dtime

q→∞ = n1 + n2− 2c, where c is the number of coincident spikes in
time on the two trains under comparison.

In between the two extreme situations described, dtime
q (·) defines a family of metrics

where the cost of displacing a spike by an amount of ∆t = 2/q [s] is equal to its
deletion and recreation. Therefore, the parameter q can be viewed as a measure
of the precision of the temporal coding, determining how far a spike can be shifted
without increasing the distance between the two spike trains with regard to the spike
time metric with q → ∞. For q 6= 0 and finite dtime will always take values in the
interval dtime(ρ1(t), ρ2(t)) ∈ {|n1−n2|, n1 +n2−2c}, where n1 and n2 are the number
of spikes on each spike train, and c the number of coincident spikes.

In the search for a minimal path between two spike trains there are restrictions in
the operations that can be performed. Namely, the path cannot comprise the shift
and deletion of the same spike, because the cost will be lower by just deleting the
spike; a spike cannot be included and then shifted, since the direct insertion of the
spike in the right position is less costly; and the insertion and deletion of the same
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Algorithm 5.1 Spike Time Metric, dtime

1: t1 ← vector of spike time instants for train ρ1

2: t2 ← vector of spike time instants for train ρ2

3: n1 ← number of elements in t1, i.e., number of spikes in train ρ1

4: n2 ← number of elements in t2, i.e., number of spikes in train ρ2

5: q ← penalty to shift one spike by one second (in any direction)
6: D← matrix of size [(n1 + 1)× (n2 + 1)] where

• first row: D0, : = [0, 1, · · · , n2]
• first column: D :,0 = [0, 1, · · · , n1]T

7: for i = 1 to n1 do {For all spikes in train ρ1, t1}
8: for j = 1 to n2 do {For all spikes in train ρ2, t2}

9: Di,j = min
{

Di−1,j + 1 , Di,j−1 + 1, Di−1,j−1 + q|t1,i − t2,j|
}

10: end for
11: end for

12: return dtime ← Dn1,n2

spike cannot be part of the minimal path between the two spike sequences. Also, a
minimal path cannot include both leftward and rightward spike shifts of a spike, nor
the crossing of two spikes. This reduces the number of operations that can be exerted
on a certain spike when comparing trains ρ1(t) and ρ2(t) to three: i) deletion of
the last analyzed spike in ρ1(t), ii) insertion of a spike in ρ1(t), or iii) the two last
spikes in ρ1(t) and ρ2(t) are related by a shift. Figure 5.7 illustrates a set of possible
operations that can be exerted to transform one spike train into another, where in
the first step a spike is shifted by ∆t in train ρ1(t), in the second step a spike is
deleted from ρ1(t), and in the third step a spike is inserted in the train, so that we
arrive at ρ2(t).

The process to calculate the distance dtime
(
ρ1(t), ρ2(t)

)
between two spike trains

is formalized in Algorithm 5.1. Figure 5.7 illustrates the computation of the spike
distance metric by considering the spike trains ρ1(t) =

∑n1
i=1 δ(t− t1i), with n1 spikes

positioned at times {t1,1, t1,2, . . . , t1,n1}, and ρ2(t) =
∑n1

i=1 δ(t− t2i) that has n2 spikes
located at {t2,1, t2,2, . . . , t2,n2}. If dtime

i,j is the spike time distance between the two
spike trains composed of the first i spikes of train ρ1(t) and of the first j spikes of
train ρ2(t), the allowed operations listed above imply that the minimum path must
be:

dtime
i,j = min

{
Add spike to ρ1 at t2,j

(Erase spike in ρ2 at t2,j)︷ ︸︸ ︷
dtime

i−1,j + 1 ;

Add spike to ρ2 at t1,i

(Erase spike in ρ1 at t1,i)︷ ︸︸ ︷
dtime

i,j−1 + 1 ; dtime
i−1,j−1 + q|t1,i − t2,j|︸ ︷︷ ︸

Shift spike in ρ1 from t1,i to t2,j

(Shift spike in ρ2 from t2,j to t1,i)

}
.

(5.17)
By successively applying the expression in Eq. (5.17) to every new spike in each spike
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train ρ1(t) and ρ2(t), a two-dimensional array can be constructed where the value
in the ith row and jth column contains the distance dtime

i,j . The first row of this
two-dimensional array is filled with dtime

0,j = j, corresponding to have zero spikes in
the first train and j spikes in the second train, so that all spikes are created in the
first train (or deleted in the second train). The first column of this array is filled
with dtime

i,0 = i, corresponding to i spikes in ρ1 and zero spikes in ρ2, so that all
spikes are deleted on the first train (or created in the second train). By iteratively
filling the (n1 + 1) × (n2 + 1) array, the overall cost dtime(ρ1(t), ρ2(t)) is located in
the array cell (n1, n2). The Algorithm 5.1 summarizes the steps needed to implement
this metric in a computer, where the matrix D(n1+1,n2+1) is recursively filled with
the distances given by Eq. (5.17). This procedure was first proposed and established
to compare gene sequences [Sellers, 1974], this procedure is also used to measure
distances between strings known as the edit or Levenshtein distance. This metric
respects Eq. (5.1) – Eq. (5.3), so that it is a metric in the mathematical sense.

5.4.2. Interspike Interval Metric

In the interspike interval metric, dinter(·), the time intervals between two consecutive
spikes convey the relevant information in the trains comparison. The neurobiological
justification to use this metric is related to the fact that, due to the dynamics of the
ions’ channels in the neuron, the effect of an action potential depends on the length
of the time interval since the last spike was fired [Victor and Purpura, 1996, 1997].

Similarly to the spike time metric, there is a limited number of allowed operations.
The allowed elementary operations are the addition of an interspike interval with the
associated spike, and the removal of an interspike interval with the associated spike;
both operations have a cost equal to 1. The other allowed operation is the shift of a
spike, that changes the duration of the associated ISI, with a cost q per second. As
illustrated in Fig. 5.8 a set of elementary steps are applied to transform the spike train
ρ1(t) into ρ2(t). The deletion and insertion of an interspike interval are exemplified
in the second and third steps of Fig. 5.8, respectively, while the shift of a spike, with
the consequent change of its interval duration and the shift of all subsequent spikes,
is exemplified in the first and fourth steps. The changing of an ISI by the amount ∆t
has a cost of q|∆t|, and has the consequence of changing the absolute time occurrence
of all subsequent spikes by ∆t; however, the interspike intervals remain unchanged.

Like in the spike time metric, for q = 0 this metric degenerates into the spike
count metric: dinter

q=0 (·) = dcount(·). Since the cost of changing the duration of an ISI

is null (q = 0), the distance is due only to the removal (or insertion) of ISIs with the
associated spikes, so that dinter

q=0 (ρ1, ρ2) = dcount(ρ1, ρ2) = |n1 − n2|, for two trains ρ1

and ρ2 with a total of n1 and n2 spikes, respectively.
For values of q different from zero, the distance depends on the temporal pat-

tern of spikes composing the sequence, namely on their ISIs. For q → ∞ an ISI

duration will never be adjusted since it is less costly to remove the spike with its
ISI, and insert another ISI with the right duration, which has a total cost of 2
(dinter(ISI removal + ISI insertion) = 2), and only the coincident ISIs between the
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Figure 5.8. Spike train transformation path in the interspike interval metric.

two trains will not be replaced. Therefore, similarly to the spike time metric, the
distance between the spike trains ρ1 and ρ2, with n1 spikes and n2 spikes (and
consequently with n1 and n2 spike intervals, respectively), for q → ∞ will be
dinter

q→∞(ρ1, ρ2) = n1 + n2 − 2c, where c now is the number of interspike intervals
with the same duration. Two ISIs are equal if the interspike interval before spike i in
train ρ1 is equal to the interspike interval before spike j in ρ2: ∆t1,i = ∆t2,j . For two
consecutive interspike intervals that are equal by ∆t1,i = ∆t2,j and ∆t1,k = ∆t2,l, one
must have k > i and l > j, because the order of the intervals cannot be reversed.
It could happen that we have a different number of coincident ISIs depending on the
matching sequence.

The Algorithm 5.2 is used to iteratively calculate the distance between two spike
trains using dinter(·), based on the time intervals between successive spikes [Victor and Purpura,
1996; Sellers, 1974]. Considering the spikes in ρ1(t) located at the time instants
{t1,1, t1,2, . . . , t1,n1}, and in ρ2(t) located at {t2,1, t2,2, . . . , t2,n2}, and that the spike
intervals are defined for ρ1 by ∆t1,i = t1,i − t1,i−1, and for ρ2 by ∆t2,j = t2,j − t2,j−1.
Figure 5.8 illustrates this process. Denoting by dinter

i,j the interspike interval distance
between two spike trains composed of the first i spikes of train ρ1(t) and the first j
spikes of the train ρ2(t), the allowed operations imply that the minimum path can
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be constructed iteratively by applying the expression:

dinter
i,j = min

{
Add ISI ∆t2,j to ρ1

(Remove ISI ∆t2,j in ρ2)︷ ︸︸ ︷
dinter

i−1,j + 1 ;

Add ISI ∆t1,i to ρ2

(Remove ISI ∆t1,i in ρ1)︷ ︸︸ ︷
dinter

i,j−1 + 1 ; dinter
ij + q|∆t1,i −∆t2,j |︸ ︷︷ ︸

Change ISI ∆t1,i in ρ1 to ∆t2,j

(Change ISI ∆t2,j in ρ2 to ∆t1,i)

}
.

(5.18)

By the successive application of this procedure, a two-dimensional array, with
dimensions (n1 + 1) × (n2 + 1), can be constructed with the interspike distances,
dinter

i,j , between the first i ISIs of ρ1(t) and the first j ISIs of ρ2(t). Algorithm 5.2
summarizes the steps needed to implement this metric in a computer, where the
matrix D(n1+1,n2+1) is iteratively filled with the distances given by Eq. (5.18), and the
overall distance dinter

ρ1,ρ2
ends in the element (n1, n2) of the matrix D. The duration of

the first ISIs is unknown, since one does not known when the previous spikes occurred.
However, they must be at least equal to the time between the start of the data
recording until the first spike occurs so that we can make ∆t1,1 = t1,1 and ∆t2,1 = t2,1

to initialize the algorithm; there are other possibilities [Victor and Purpura, 1997].
The first row of the two dimensional array can be filled with dinter

0,j = j, meaning
that all interspike intervals have to be removed from ρ1 (or inserted in ρ2), while
the first column can be filled by taking into account that dinter

i,0 = i, meaning that
all interspike intervals have to be removed from ρ2 (or inserted in ρ1). This metric
obeys to Eq. (5.1) – Eq. (5.3), being a metric in the mathematical sense.

5.4.3. Spike Train Distance Metric

The spike train distance metric, d2(·) is a metric less general than the previous spike
train metrics, since it is particularly suited to compare spike trains, but easier to
analyze and compute [van Rossum, 2001]. This metric measures the dissimilarity
between two spike trains by taking into account the temporal structure of the train,
and depends on a temporal parameter τ that measures the contribution of the dis-
placement of spikes in the two trains under comparison. This metric has a plausible
physiological reasoning behind, and is easy to implement than the previous spike
train metrics. The spike train distance metric compares a modified version of the
spike trains resulting from the convolution of the neural function with an exponen-
tially decaying kernel. This kernel can be interpreted as the postsynaptic potentials
in higher order-neurons for a small decay rate, while for a large decaying rate it can be
interpreted as calcium-induced currents in the neuron membrane [Dayan and Abbot,
2001].

In this metric the neural response function ρ(t), given by Eq. (B.7), is modified
by replacing every spike, represented as a delta function, at times ti, i = 1, . . . , n, by
the decaying exponential function:

h(t) = e−t/τ H(t) , (5.19)
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Algorithm 5.2 Interspike interval metric, dinter

1: t1 ← vector of spike time instants for train ρ1

2: t2 ← vector of spike time instants for train ρ2

3: n1 ← number of elements in t1, i.e., number of spikes in train ρ1

4: n2 ← number of elements in t2, i.e. number of spikes in train ρ2

5: q ← penalty to increase/decrease one second the interspike interval
6: D← matrix of size [(n1 + 1)× (n2 + 1)] where

• first row: D0, : = [0, · · · , n2]
• first column: D :,0 = [0, · · · , n1]

T

7: {I1, I2} ← vector of interspike intervals for trains ρ1 and ρ2, respectively:
• I1,1 ← t1,1; I2,1 ← t2,1;
• I1,i ← t1,i − t1,i−1, I2,j ← t2,j − t2,j−1, ∀i,j>1

8: for i = 1 to n1 do {For all spikes in train ρ1, t1}
9: for j = 1 to n2 do {For all spikes in train ρ2, t2}

10: Di,j = min
{

Di−1,j + 1 , Di,j−1 + 1, Di−1,j−1 + q|I1,i − I2,j|
}

11: end for
12: end for

13: return dinter ← Dn1,n2

where the decay rate is given by τ . The modified spike train becomes

ρ′(t) = ρ(t) ∗ h(t) =
n∑

i=1

e−(t−ti)/τ H(t− ti). (5.20)

Figure 5.9 displays the schematic result of the convolution of spike trains with the
exponentially decaying kernel. The distance between the two spike trains, ρ1(t) and
ρ2(t), is given by the expression:

d2(ρ1(t), ρ2(t)) =
1

τ

∞∫

0

[ρ′
1(t)− ρ′

2(t)]
2

dt, (5.21)

which corresponds to the Euclidean distance between the two filtered spike trains
ρ′

1(t) and ρ′
2(t). In this expression, the modified spike trains ρ′

1(t) and ρ′
2(t) are

subtracted, and the square of those values is integrated in time.
This metric shows different behaviors depending on the values of the decay con-

stant τ . For a value of τ much smaller than the ISI, the smoothed spike trains
in Eq. (5.20) will contribute to the integral only if the spikes in both sequences are
separated by more than τ , and the metric works as a coincidence detector. In the
case of continuous time spike trains, the number of coincident spikes can be ne-
glected when τ → 0, so that the cross terms obtained by expanding the integrand
in Eq. (5.21) can be neglected, and the expression for the distance becomes:

lim
τ→0

d2(ρ1(t), ρ2(t)) =
1

τ

∞∫

0

[
ρ′2

1 (t) + ρ′2
2 (t)

]
dt =

1

2
(n1 + n2), (5.22)
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Figure 5.9. Spike waveform shape comparison with the spike distance metric.

where n1 and n2 are the number of spikes in the trains ρ1(t) and ρ2(t), respectively.
Thus, the metric just counts the number of noncoincident spikes. If the spike trains
have c coincident spikes, the distance metric gives:

lim
τ→0

d2(ρ1(t), ρ2(t)) =
1

2
(n1 + n2 − 2c), (5.23)

which is equal (excluding the multiplicative factor 1/2) to the result obtained with
the spike time metric when a large cost for the spike shifting operation (dtime

q→∞) is
considered.

On the other hand, when a very large value for τ (τ → ∞) is used the main
contribution to the integral in Eq. (5.21) comes from the times when the last spike
has passed but the exponent has still not decayed. In this case, the metric can be
approximated by:

lim
τ→∞

d2
[
ρ1(t), ρ2(t)

]
= lim

τ→∞
1

τ

∞∫

0

( n1∑

i=1

H(t− ti) e−(t−ti)/τ

−
n2∑

j=1

H(t− tj) e−(t−tj )/τ
)2

dt

= lim
τ→∞

1

τ

∞∫

0

(
n1 e−t/τ −n2 e−t/τ

)2
dt

=
1

2
(n1 − n2)2,

(5.24)

where the second equality results from the fact that:

lim
τ→∞

n∑

i=1

H(t− ti) e−(t−ti)/τ =
n∑

i=1

lim
τ→∞ H(t− ti) eti/τ

︸ ︷︷ ︸
=1

e−t/τ . (5.25)
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The expressions for some special operations on the spike trains can also be derived,
like the insertion (or deletion) of a spike, and the shift of a spike. If the spike train
ρ2(t) differs from ρ1(t) just for a spike placed at time ti, such that their convolved
versions are related by:

ρ′
2(t) = ρ′

1(t) + H(t− ti) e−(t−ti)/τ , (5.26)

the distance metric gives

d2
(
ρ1(t), ρ2(t)

)
=

1

τ

∞∫

ti

e−2(t−ti)/τ dt =
1

2
, (5.27)

and the deletion, or removal, of a spike produces the same value that is independent
of the decay constant τ .

For two spike trains whose only difference is the shift of a spike from ti to ti + ∆t
in train ρ2(t) relative to ρ1(t), such that the convolved spike trains are related by:

ρ′
2(t) = ρ′

1(t)− H(t− ti) e−(t−ti)/τ + H(t− ti −∆t) e−(t−ti−∆t)/τ , (5.28)

the distance between these spike trains is

d2
(
ρ1(t), ρ2(t)

)
=

1

τ

ti+∆t∫

ti

e−2(t−ti)/τ dt

+
1

τ

∞∫

ti+∆t

[
e−(t−ti)/τ − e−(t−ti−∆t)/τ

]2
dt

= 1− e−|∆t|/τ ,

(5.29)

which approaches the value one for a large distance ∆t between spikes compared
to the decay τ , and zero otherwise. Analytical expressions can be derived for
other particular relations between the spike trains under analysis [van Rossum, 2001;
Tomás and Sousa, 2008]. An interesting case considers the distance between two un-
correlated homogeneous Poisson spike trains generated with the same constant firing
rate r. According to Eq. (5.22) the distance between two spike trains approaches
(n1 + n2)/2 for a small τ , where n1 and n2 are the number of spikes in each trial.
However, as stated by Eq. (B.77), the number of expected spikes in a Poisson trial
with a constant firing rate r and a time duration T is equal to rT , so that

d2
τ→0

(
ρ1(t), ρ2(t)

)
= rT. (5.30)

On the other hand, for large τ , the distance values tend towards (n1 − n2)
2/2, as

stated by Eq. (5.24). The expectation value 〈(n1−n2)2〉/2 = 〈n2
1〉/2+〈n2

2〉/2−〈n1n2〉
for a Poisson process can be calculated with the help of Eq. (B.74) and Eq. (B.75).
Thus, 〈n2

1〉 = 〈n2
2〉 = rT + (rT )2 and 〈n1n2〉 = (rT )2, which results in

d2
τ→∞

(
ρ1(t), ρ2(t)

)
= rT. (5.31)
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Spike Train Metrics
Spike Time Metric Interspike Interval Metric

q min max min max
q = 0 0 9 0 9
q =∞ 132 165 126 147

Table 5.2. Limit values for the spike train metrics using the neuronal responses of a
ON-type salamander RGC.

From Eq. (5.30) and Eq. (5.31) it can be observed that the average value for the
distance metric is equal for small and for large values of τ in the case of a spike train
described by a homogeneous Poisson process with mean firing rate r.

This metric can be computed in discrete time by convolving the involved discrete
spike trains, ρ1[n] and ρ2[n], with the discrete kernel

h[n] = e−n Ts/τ H[n], (5.32)

where H[n] is the discrete Heaviside unit step function and Ts is the sampling period.
The convolved spike trains are subtracted from each other, and the result is squared
and summed (the discrete equivalent to integration). The final expression for the
discrete spike train distance is:

d2
(
ρ1[n], ρ2[n]

)
=

1

τ

N∑

i=0

(ρ′
1[i]− ρ′

2[i]
)2

Ts, (5.33)

where ρ′[n] = ρ[n] ∗ h[n] and N is the length of the discretized spike trains.

5.4.4. Spike Train Metrics Analysis

The spike train metrics compare two spike trains directly. The spike time metric and
the spike interval metric were applied to classify a set of neural responses, namely with
the objective of finding the metric that aggregates the neural responses in a more
compact subspace of the response space [Victor and Purpura, 1996]. The metrics
gave different results and it was noted by its proponents that the spike time metric
and the interspike interval metric do not refine each other in the topological sense,
meaning that the sequence of successive steps that minimize the distance between
two spike trains according to one metric can have the opposite effect with respect to
the other metric [Victor and Purpura, 1997].

Figure 5.10 presents two graphics that display the evolution of the spike time metric
and of the interspike interval metric as a function of q by doing the inter comparison
of the twelve trials displayed in Fig. B.6b. Table 5.2 shows the values for the maxima
and minima for the limit values of q. For q = 0 the minimum and maximum values
are equal for both metrics, and both metrics reduce to the spike count metric –
dtime

q=0 (ρ1, ρ2) = dinter
q=0 (ρ1, ρ2) = dcount(ρ1, ρ2). Both metrics have a minimum zero value

for q = 0 since there are several spike trains within the set of analyzed trials with

141



5. Neural Activity Metrics

the same number of spikes. From the values for the maximum one can observe that
two spike trains can differ by 9 spikes at most, in terms of the number of spikes.
For q → ∞, the values for the spike time metric indicate that there are, at the
minimum, 132 and at the maximum 165 non-coincident spikes in the spike trains.
For the interspike interval metric, the values for q → ∞ mean that the spike trains
under comparison possess 126 non-coincident spike intervals at minimum, and 147
at maximum.

Figure 5.10 shows the evolution of the spike time metric, dtime, and of the interspike
interval metric, dint, versus the shifting cost q. The curves in Fig. 5.10 were obtained
by performing a inter-trial evaluation of the salamander type-ON RGC responses, i.e.,
by comparing all 66 pairs of different spike trains and extracting the mean value and
the standard deviation of the error. For q ≥ 2/Ts, where Ts is the sampling period
(Ts = 1 ms in this case), the distance becomes constant because the cost of shifting
a spike to the next time bin is bigger than deleting it and raising a new one in the
correct time bin. For small values of q, the cost tends to the difference in the number
of spikes in the two trains.

If the distance between one of the trials from the ON salamander RGC and another
spike train with no spikes (a null spike train) is calculated, as illustrated in Fig. 5.10,
an insightful result is obtained: for large values of q, the null spike train is closer
to the RGC neural responses than the two response trials of the same cell for the
same stimulus are. This result sheds some light onto the limit values that must be
used for the parameter q by defining its maximum value, i.e., the maximum temporal
sensitivity for the metrics.

Generally, since not all cells present the same temporal sensitivity, the parameter
q must be chosen according to the neural responses. A method for picking the
value of q is to trace the curves illustrated in Fig. 5.10 for a given set of neural
responses. For the case of the salamander type-ON RGC responses, these values are
qmax ≈ 110 s−1 for the spike time, and qmax ≈ 70 s−1 for the interspike interval,
which define a maximum spike/interspike interval displacement of 1/qmax ≈ 9 ms
and 1/qmax ≈ 14 ms, respectively.

As for the case of the spike time and interspike interval metrics, by performing
an inter-trial evaluation of a cell’s responses, a suitable range of values to be used
for the parameter τ of the spike train distance metric, d2(·), can be found. Fig. 5.11
shows several curves as a function of τ , namely: a) the spike train distance error
when applied to the inter-trial comparison of the salamander RGCs responses; b) the
variance of the inter-trial comparison; c) the comparison of the RGCs responses with
a null spike train; and d) the comparison of the RGCs responses with a spike train
generated by a homogeneous Poisson process (i.e., with constant firing rate). In the
last case, the firing rate was defined for each value of τ as the one leading to the
minimum error. Comparing the curves in Fig. 5.11, one can see that the maximum
temporal precision of the cell’s responses occurs at τ = 8 ms, so that τ should be
larger that 8 ms for this cell; otherwise the comparison with the null spike train
will give better results. Moreover, the minimum standard deviation of the inter-
trial comparison is achieved at approximately τ = 80 ms. As in the previous cases,
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Figure 5.10. Inter-trial evaluation of salamander RGC responses for varying temporal
sensitivities (line – mean value; shaded – mean ± standard deviation).
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Figure 5.11. Inter-trial evaluation of salamander RGC responses with the spike distance
metric as a function of the temporal sensitivity; (line – mean value; shaded area – mean
± standard deviation): (a) inter-trial evaluation of cell responses; (b) standard deviation
of the inter- trial evaluation of cell responses; (c) cross-comparison with a null spike train;
(d) cross-comparison with the best constant rate model.

this analysis allows the definition of a range of values for the precision parameter:
τ ∈ [8; 100] ms. It should be noted that the superior limit of the range is also defined
by the fact that the spike train distance operates by measuring the mean squared
error of the low-pass filtered spike trains. Thus, for large values of τ , high-frequency
information is lost and only the average firing rate over time is measured; it will
therefore lead to apparent small errors.

This section presented a method to determine the range of values for the parameter
q for the spike time and the interspike interval metrics, and the parameter τ for the
spike train distance metric. However, the obtained values are not fixed for all neural
responses, as some cells exhibit higher temporal precision than others do. Thus, in
general, this method should be applied to the target neural responses before applying
the neural metrics to assess models and responses.

The computational implementation of the spike train distance metric (d2) is straight-
forward. A difficulty of this metric is the correct choice of the right τ , due to the fact
that it scales the kernel in Eq. (5.32). For τ ≪ Ts the discrete kernel in Eq. (5.32)
will always be equal to the discrete sequence [1 0 0 . . . ]; and the convolution will
leave the discrete neuronal response function ρ[n] unchanged, while the value of the
numeric integration is divided by τ (see Eq. (5.33)), leading to erroneous values that
can increase unboundedly for small τ . Thus, τ must be several times bigger than
the sampling period Ts, so that the numerical integration expressed by Eq. (5.33)
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Figure 5.12. Parsing a set of spike trains into firing events.

gives meaningful results. For values of τ → ∞ the values of the metric should tend
to Eq. (5.24), however this tendency is very slow, and for big values of τ the kernel
sequence will be quite long; the calculations will become lengthy, and the memory
requirements can become prohibitive.

5.5. Spike Events Metrics

The spike events metric, devents(·), has been proposed to measure the distance be-
tween two sets of spikes trains: a reference and an estimated set [Keat et al., 2001].
This metric starts by defining the firing events on each set of spike trains and employs
the matching principle used in [Victor and Purpura, 1996] to match the events.

This metric is intended to compare sets of spike trains corresponding to the re-
sponses of a neuron to the same stimulus – the set of reference trials – with a second
set of spike trains – the predicted set of trials – predicted by a model, for example.
The comparison is made in terms of firing events, where a firing event is obtained by
grouping identical bursts of spikes within the spike trains. Figure 5.12 represents a
set of M spike trains with the events classification.

The events metric is based on the assumption that the neuron responds, within
a certain range, with similar spike trains to the same stimulus. These spike trains
are characterized by regions where no spikes are fired, followed by a burst of spikes
– a spike event – in response to stimuli (see Fig. 5.3). Moreover, it was observed,
particularly in the case of the retina, that these trains are reproducible from trial to
trial, not only in terms of the time occurrence of the spikes but also regarding the
number of spikes [Reinagel, 2001]. The spike train metrics described previously were
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5. Neural Activity Metrics

found to be unsuited to measure the reliability of such trains. Therefore, the spike
events metric takes into account: the time occurrence of spikes, the number of spikes,
the variation in the time occurrence of each spike in the event, and the variation of
the number of spikes in each event.

The computation of the spike events metric starts by parsing the spike trains
into firing events (see Fig. 5.12), and then by measuring the cost of matching the
events between the two sets. Firing events correspond to bursts of spikes delimited by
regions where the firing rate is nearly zero. To compute the boundary values between
firing events, the PSTH is obtained from the set of spike trains. This PSTH is usually
smoothed by convolving it with a Gaussian filter whose width, σ, is defined as the
time scale of modulations in the firing rate. Specifically, the value of σ is obtained by
adjusting a Gaussian function to the histogram of time differences between all pairs
of spikes trains within a trial. The interspike interval histogram can be obtained by
correlating all pairs of trials from the set (see Sec. B.1.4). The value of σ is made equal
to the width of the Gaussian curve fitted to the interspike time histogram divided
by
√

2, because both spikes from the two spike trains contribute to the interspike
time jitter [Berry et al., 1997]. Algorithm 5.3 details the steps to compute the width
of the smoothing filter.

Figure 5.13a shows a segment with a 2 s duration of a set of 13 trials of a rabbit RGC

when excited by ON-OFF type stimuli (see Fig. B.5a), and Fig. 5.13b shows the real
and the smoothed PSTH. The minima of the smoothed PSTH are calculated and they
correspond to the locations where the firing event boundaries should be positioned.
The spikes between a pair of consecutive such minima are considered to be part of
the same firing event. Since not all minima are equal to zero, a rule must be used
to distinguish between real firing event boundaries and just a local decrease in the
firing rate. Therefore, a given minimum mi, between to consecutive maxima Mi and
Mi+1 in the PSTH, is considered to be a firing event boundary if it is smaller than its
neighboring maxima according to the rule:

√
MiMi+1

mi

≥ φ. (5.34)

If the condition in Eq. (5.34) is verified, then mi is considered a true minimum
that identifies a boundary between two adjacent firing events; otherwise, the two
initial firing events are, in fact, a single event. The original values used for φ are
φ ∈ {1.5, 3}, but experimental results have shown that the chosen value does not
have too much influence in the result [Keat et al., 2001]. Figure 5.13b shows the fir-
ing events obtained by the application of the criteria decision expressed by Eq. (5.34)
with φ = 3. After being defined, each firing event j from every response i is charac-
terized by two numbers: the time of the first spike, Tj,i; and the number of spikes,
Nj,i (see Fig. 5.12). Four quantities are calculated for each firing event, in order to
obtain the correspondence between the firing events of the two sets of trials. The
event j from a set comprising M trials (refer to Fig. 5.12) is characterized by:

• the average across trials of the time occurrence of the first spike within the
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Algorithm 5.3 Gaussian filter width σ, GaussFilterWidth

1: T ← sampling period
2: M ← number of spike trains
3: ρM, : ← matrix whose rows are the discretized reference spike trains

{Accumulate the cross-correlation between all trials of spikes for a maximum lag
lmax:}

4: for i = 1 to M − 1 do {For all trials in ρ}
5: for j = i to M do {For trials in ρ not equal to ρi, :}
6: c = c + corr(ρi, :, ρj, :) {correlate the spike trains}
7: end for
8: end for {c as dimensions 2lmax + 1}

{Take into account only the main lobe of the histogram c}
9: m← c1

10: for i = 1 to lmax do
11: if m < ci then
12: l = i; m = ci

13: end if
14: end for
15: c← cl to c2l+1

{Calculate the mean of the histogram: µ}
16: ζ ← 0; n← 0
17: for i = 1 to 2l + 1 do
18: ζ = ζ + ci(i− (l + 1))T
19: n = n + ci

20: end for
21: µ = ζ

n

{Variance calculation: σ2}
22: ǫ← 0
23: for i = 1 to 2l + 1 do
24: ǫ = ǫ + (ci(i− (l + 1))T )2

25: end for

26: σ2 = ǫ
n
− µ2

27: σ =
√

σ2 //Standard deviation

{Finally, taking into account that the contribution to the interspike interval is
due to spikes from both trials}

28: σ = σ√
2

29: return σ
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(a) Trains of spikes from a rabbit ON-type cell. Each spike is represented by a dot.
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(c) Firing events characterization: the values of the cross center (x, y) correspond to the
mean time of first spike, T , and to mean number of spikes, N , respectively; the cross width
represents the standard deviation of the time occurrence of the first spike, δT , while its height
is the standard deviation of the number of spikes, δN .

Figure 5.13. Characterization of 13 observed trials into firing events.
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firing event:

Tj =
1

M

M∑

i=1

Tji ; (5.35)

• the average number of spikes across trials in the event:

Nj =
1

M

M∑

i=1

Nji ; (5.36)

• the standard deviation of the time occurrence of the first spike, in an event,
across trials, which measures the time jitter of the first spike in the event:

δTj =

√√√√ 1

M − 1

M∑

i=1

(Tji − Tj)2 ; (5.37)

• the standard deviation of the number of spikes across the trials within a firing
event, which measures the deviation from the mean spike number:

δNj =

√√√√ 1

M − 1

M∑

i=1

(Nji −Nj)2 . (5.38)

This procedure maps the set of spike trains into a sequence of firing events – a
train of events – where each event is characterized by the four quantities: T , N , δT ,
and δN . Figure 5.13c shows the characterization of the firing events from the rabbit
ON-type RGC responses of Fig. 5.13a. The algorithm described in Algorithm 5.4
describes the steps followed to parse a set of trials into a sequence of firing events.
The next step in computing the spike event metric is to match the firing events from
the observed retina responses with the predicted neural responses.

If the firing events of the observed set are ordered according to index i and the
ones from the estimated set according to index j, the overall expression for the error
between the two event trains is given by

devent = eT ET + eN EN + eδT EδT + eδNEδN − eMEM . (5.39)

This distance measure includes five sources of error between the observed and pre-
dicted spike trains, namely: ET , EN , EδT , EδN , EM . The error terms in Eq. (5.39)
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Algorithm 5.4 Parsing spike trains to events, Spike2Events

1: ρ← matrix whose rows are the spike trains
{Compute:

• The firing rate r from ρM,N

• Smooth r with a Gaussian filter with a width equal to σ ←
GaussF ilterWidth(ρ)

• Compute the minima and maxima of the rate r; every minimum mi is
delimited by the maxima Mi and Mi+1, such that the following conditions
are true:

– mi ≤ r(k), for all ∀Ni<k<Ni+1
, where Ni is the timestamp of the

maxima Mi

– Mi ≥ r(k), for all ∀ni−1<k<ni
, where ni is the timestamp of the

minima mi

– Mi ≥ mi ∧ Mi+1 ≥ mi

}
2: (m, n)← vectors of values and time stamps of the minima of rate r, i.e. m = r(n)

3: (M, N) ← vectors of values and time stamps of the maxima of rate r, i.e.,
M = r(N) {Remove fake minima according to criteria of Eq. (5.34) or that
leads to an event with no spikes}

4: for all mi ∈m do
5: if

√
MiMi+1/mi < φ then

6: Remove minimum mi and its index ni from the vectors m and n, respectively

7: Remove the smallest of the maxima {Mi, Mi+1} and its index from the vec-
tors M and N

8: end if
9: end for

{Compute event statistics}
10: for all mi ∈m do
11: Ti ← average time stamp of the first spike in the interval [ni−1 ni]
12: Ni ← average number of spikes in the interval [ni−1 ni]
13: δT i ← standard deviation in the time of first spike in [ni−1 ni]
14: δN i ← standard deviation in the number of spikes in [ni−1 ni]
15: end for
16: return TTT , NNN , δTδTδT , δNδNδN

are defined as:

ET =
∑

matched
event pairs (i, j)

|Ti − T̂j |; (5.40)

EN =
∑

matched
event pairs (i, j)

|Ni − N̂j |+
∑

unmatched
events i

Ni +
∑

unmatched
events j

N̂j ; (5.41)

EδT =
∑

matched
event pairs (i, j)

|δTi − δ̂T j|; (5.42)

EδN =
∑

matched
event pairs (i, j)

|δN i − δ̂N j|; (5.43)
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The hat over the quantities in Eq. (5.40) – Eq. (5.44) refers to the values obtained
from the estimated firing events, while the quantities without a hat are related to the
observed firing events from a real neuron cell. The expression in Eq. (5.44) indicates
that the matching of two events between sequences is rewarded by adding a negative
contribution to the error in Eq. (5.39).

The weights for each error component in Eq. (5.39) are given by:

eT =
1

E{δT} ;

eN =
1

E{δN} ;

eδT =
1

2
eT ;

eδN =
1

2
eN ;

eM = 2;

(5.45)

where the averages are calculated across all events in the reference event sequence.
That is, if we have a total of Q events in the reference set of trials, these values are:

E{δT} =
1

Q

Q∑

j=1

δTj ; E{δN} =
1

Q

Q∑

j=1

δNj. (5.46)

The mean of the standard deviation of the first spike occurrence within the trials
(E{δT}) is used to scale the error related to the time jitter differences between
the neurons and the predicted trials, while the mean of the standard deviation of the
number of spikes (E{δN}) plays the same role by scaling the differences in the number
of spikes. The coefficients eδT and eδN are equal to half of eT and eN , respectively,
meaning that the spike occurrence time and the spike number are twice as important
to the error measurement as their variation. The value of eM is constant and gives a
negative contribution to the error in order to reward matching two events.

To match the events a recursive procedure similar to the one described to match
different spike trains in the spike time metric (and in the interspike interval metric)
is employed. To obtain a recursive procedure, the restriction for the alignment of
two firing events sequences apply: two events in one train cannot be matched to
two events in the other train that occur in reverse order. Representing the sequence
of firing events from the reference trials by R, which possesses n1 events, and the
sequence of firing events from the estimated trials by R̂, which has n2 events, the
number of possible matches is limited. Matching the event i from R with the event j
from R̂, one of three cases can occur: i) the last analyzed event in R is unmatched;
ii) the last analyzed event in R̂ is unmatched; or iii) the last events in R and R̂
match each other. If devents

i,j represents the error incurred in matching the first i events

of R with the first j events of R̂, taking into account the previous restrictions, the
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events can be matched iteratively. Each one of the previous three possibilities leads
to three different values for the matching error, and the smallest value should be
chosen to match event i with event j according to:

devents
i,j = min

{
devents

i−1,j + eNNi ; devents
i,j−1 + eNN̂j ; devents

i−1,j−1 + Mi,j

}
, (5.47)

where the cost Mi,j for matching events i and j is obtained from the expression:

Mi,j = eT |Ti − T̂j |+ eN |Ni − N̂j |+ eδT |δT i − δ̂T j |+ eδN |δN i − δ̂N j | − eM . (5.48)

Based on Eq. (5.47), a recursive procedure can be initiated that will iteratively match
the events from the two sets. By starting with devents

0,0 = 0, a matrix can be filled for
the match of the first i events of one train to the first j events of the other train by
recursively calculating devents

i,j . The last element in the diagonal contains the total
error given by Eq. (5.39). Algorithm 5.5 presents the sequence of operations to match
the events from the reference sequence with the ones from the observed sequence.

Actually, not all terms of the matrix need to be calculated, since for two events
far apart in time, the error Mi,j is so large that the two events will never match as
pointed out in [Keat et al., 2001]. Specifically, events that occur farther apart than
the following condition need not to be calculated:

|Ti − T̂j | >
1

eT

(
2eN Nmax + eM

)
, (5.49)

where Nmax is the largest number of spikes in an event from the event sequences
under comparison.

5.5.1. Spike Events Metric Analysis

The firing events metric compares trains of events. The matching of two events gives
a negative contribution to the overall error (see Eq. (5.44) and Eq. (5.48)), so that the
distance between a set of spike trains and itself is −MeM ≤ 0, where M is the number
of identified events. While this result violates the typical non-negativity property of
general metrics, an offset value equal to MeM can be added (which violates the
interchangeability property in this case).

The delimitation of events is a critical step that goes through the calculation of
the minima of the smoothed PSTH. A real maximum can exist, or there can be a
simple transition to/from a constant firing rate. Therefore, extra care must be taken
in these cases. After calculating the PSTH minima, the events should be identified
using Eq. (5.34); this avoids the use of barely pronounced minima to generate an
event division. Even taking these cases into consideration, the metric is very sensitive
to the identification of events; with small variations, such as joining two events into
one, the metric can significantly vary its result. To demonstrate this the parameter σ
can be varied, which corresponds to the standard deviation of the Gaussian function
used to smooth the PSTH, and perform an inter-trial comparison of the responses of
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Figure 5.14. Inter-trial evaluation of salamander RGC responses varying the standard
deviation values of the Gaussian smoothing function: (a) average value of the inter-trial
evaluation of cell responses; (b) standard deviation of the inter-trial evaluation of cell
responses; (c) cross-comparison with a null spike train; (d) number of identified events.
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Algorithm 5.5 Spike events metric, devents

1: ρ(t)← set of observed spike trains
2: ρ̂(t)← set of estimated spike trains

{Compute event statistics, as described in Algorithm 5.4; the function results in
four vectors for each set of trials}

3: {TTT ,NNN , δTδTδT , δNδNδN} ← Spike2Events(ρ)

4: {T̂TT ,N̂NN , δ̂TδTδT , δ̂NδNδN} ← Spike2Events(ρ̂)
5: n1 ← number of events in ρ(t), i.e., number of elements in the vectors TTT (and in

the other statistics’ vector)
6: n2 ← number of events in ρ̂(t), i.e., number of elements in the vectors T̂TT (like in

the other statistics)
{Compute weights for each penalty as stated in Eq. (5.45)}

7: eT ← 1/E{δTδTδT}; eN ← 1/E{δNδNδN};
8: eδT ← 1/(2E{δTδTδT}); eδN ← 1/(2E{δNδNδN}); eM ← 2

{Compute the distance between the first i events of ρ(t) and the first j events of
ρ̂(t)}

9: D← matrix of size [(n1 + 1)× (n2 + 1)] where

• first row: D0, : = [0, eNT̂TT
T
]

• first column: D :,0 = [0, eNTTT ]T

10: for i = 1 to n1 do {For all events of ρ}
11: for j = 1 to n2 do {For all events of ρ̂}

12: M = eT |TTT i − T̂TT j |+ eN |NNN i − N̂NN j |+ eδT |δTδTδT i − δ̂TδTδT j |+ eδN |δNδNδN i − δ̂NδNδN j| − eM

13: Di,j = min
{

Di−1,j + eNNi; Di,j−1 + eN N̂j, Di−1,j−1 + M
}

14: end for
15: end for

16: return devents ← Dn1,n2

the salamander retinal ganglion cell. It should be noticed that the use of different
σ values leads to variations in the number of identified events. For the inter-trial
evaluation values presented in Fig. 5.14, MeM has been added to the metric result;
this shifts the baseline of comparison from −MeM to 0, i.e., the point where two sets
of spike trains are identified as identical.

To obtain these results, the 12 trials were divided into two groups of 6 trials;
the mean values and standard deviation were computed by calculating the events
metric error for all possible combinations of 6 trials. As shown in Fig. 5.14, as
the standard deviation of the Gaussian smoothing function increases the number of
identified events decreases. This is similar to varying the parameter φ in Eq. (5.34),
where a larger value for φ implies that more events are merged together.

Analyzing the curves presented in Fig. 5.14, we can conclude that the mean error
value varies considerably with the number of identified events. This problem comes
mainly from the method of computing the weights in Eq. (5.45): by making them
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proportional to the inverse on the average value of the variances, a small misalignment
on some spikes or a small variability of the number of spikes leads to a large variability
on the weights. Therefore, a slight change in the value of either σ or φ results in: a
variation in the number of identified events; and in a change of the weights; and in
different error values. Another result from this variability is the large variance of the
error, which in some cases is even larger than its mean value.

The spike events metric evaluates the spike trains from a perspective that is not
directly considered by the other presented error metrics. However, its instability
with a slight variation on the parameters and the event detection algorithm makes
its application difficult. This problem will be further evidenced in the next section
when it is applied to neural modeling.

The spike events metric has the particularity that, every time two events match
with each other, there is a negative contribution – a compensation – to the overall
error value. However, the application of this metric requires several trials of the
response of a given cell for the same stimulus in order to define the events. Moreover,
this metric violates the condition in Eq. (5.1) to define a metric function: it can give
a negative distance between two sets of spike trains. Nevertheless, this problem could
be solved by adding an offset to the origin by knowing the number of firing events
in the reference set. The value to add to the firing events error in Eq. (5.39) would
be MeM , where M is the number of events present in the reference data. Although
this leads to the desired situation that if the two sets are equal their distance will be
zero, as Eq. (5.1) states. However, with this new term the property of Eq. (5.2) is
not respected. Moreover, using the statistics of the reference spike train to compute
the weights in Eq. (5.45) this metric does not fulfill the condition in Eq. (5.2).

Table 5.3 shows the values obtained by the application of the spike events metrics
to the salamander ON-type RGC responses and to the white noise stimuli. The firing
events are classified using Eq. (5.34) and a threshold for the events discrimination
equal to φ = 3.

As it was previously remarked, devents(·) does not possess the metrics’ property
in Eq. (5.1); by comparing the set of spike trains with itself, the error is not zero
but equal to −2×M , where M is the number of events. This is due to the negative
term in Eq. (5.39) and all events are perfectly matched between the two sets of spike
trains.

Spike Events Metric
mean ± std min max

-0.8469±9.9248 -26.1630 29.7635

Table 5.3. Mean and limit values for the spike events metric applied to the salamander
ON-type RGC responses.

155



5. Neural Activity Metrics

Spike response trials

RGC

SLIF
model

t [s]

6 7 8 9 10

Figure 5.15. Salamander RGC and SLIF model responses.
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Figure 5.16. Evaluation of model responses with the spike time metric; using the
salamander RGC responses for comparison (legend: model name/training method).
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Figure 5.17. Evaluation of model responses with the interspike interval metric; using the
rabbit RGC ON-OFF responses for comparison (legend: model name/training method).

5.6. Tuning and Assessment of Retina Models

For a further evaluation of the neural code metrics, they were applied for the tun-
ing and posterior analysis of the output of neural models. This analysis employed
four retina models that are briefly described in the next section. To illustrate the
drawbacks of the metric’s application, four neural models of the retina are analyzed:
i) a deterministic model Wilke et al. [2001]; Thiel et al. [2003] that outputs the fir-
ing rate, r(t), this model is described and analyzed in Sec. 3.5.1; ii) a stochastic
model Keat et al. [2001] that uses two internal noise sources to model the variability
of the retina response and outputs the spike train itself, whose details are described
in Sec. 3.5.2; iii) a LNP model Chichilnisky [2001], also designated as white-noise
model due to the procedure used for fitting its parameters, that also produces a
firing rate that is presented in Sec. 3.5.3; and iv) a SLIF model that also outputs
the sequence of spikes Tomás et al. [2008], whose description and tuning is presented
in Sec. 4.2. All models include a linear temporal filtering input block that outputs
a temporal generator potential that drives a nonlinear block. In a more general
approach, these models should also include a spatial filter to model the spatial pro-
cessing properties of the retina (as is the case of the deterministic model Wilke et al.
[2001]; Thiel et al. [2003]). However, for the present analysis and since the neuronal
retina data does not have spatial information, the focus is on the temporal dimension
and the spatial component is disregarded.

To assess the retina models, the two sets of data presented in the Fig. 5.2 and Fig. 5.3
were divided into two subsets: a training subset, used to optimize the models’
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parameters, consisting of 60% of the total number of available neural responses;
and a validation subset consisting of the remaining 40%, used to evaluate the re-
sults. The search for the optimal values in the parameters’ space was performed
using unconstrained nonlinear optimization with the Nealder-Mead simplex algo-
rithm [Flannery et al., 2002], complemented with a simulated annealing scheme based
in [Efstratiadis and Koutsoyiannis, 2002]. The RGCs responses were discretized with
a sampling period of Ts = 1 ms.

The metrics used for tuning the models were the MSE for the white noise model, and
the NMSE and devents for the stochastic and deterministic models, respectively; the
SLIF model was trained using a ML approach [Tomás et al., 2008]. The training with
the rate-based metrics, namely the MSE and the NMSE was made using a Gaussian
filter with a standard deviation of σ = 30 ms and σ = 20 ms for the ON-OFF and
sampled white noise stimuli, respectively. When tuning the model parameters using
the spike events metric, the PSTH was smoothed with Gaussian filters of σ = 47 ms
and σ = 17 ms, for the ON-OFF and sampled white noise stimuli, respectively.
These values correspond to the original algorithm implementation, where σ is made
equal to the time scale of the modulations in the firing rate [Berry et al., 1997]. To
illustrate the results of model tuning, Fig. 5.15 qualitatively compares 20 spike trains
produced by the SLIF model against the salamander testing data set.

The use of the spike time and interspike interval metrics in the tuning of neuron
models is unable to determine proper parameter sets. This problem was not noticed
only in the neuronal responses and with the models analyzed, but seems to be a
general problem of these metrics. For moderate values of the temporal precision
parameter q, a reasonable solution for the model is to fire no spikes at all. Once the
model reaches this point, it becomes difficult to evolve to a new set of parameters
that results in firing spikes in ”reasonable” time bins, i.e., such in a way that it
reduces the error. This situation is even worse for high values of q, where its value is
beyond the limit defined in section Sec. 5.4.4, when the null spike train has a lower
error than the inter-trial error.

Nonetheless, the spike time metric and the spike interval metric are useful in the
analysis of the models’ output, for example to assess the variability of neural sys-
tems [Kreiman et al., 2000; Chichilnisky and Rieke, 2005; Reinagel and Reid, 2002].
This however must be made with care, as shown in Sec. 5.4, if an incorrect set of pa-
rameters is chosen, the null spike train appears to be closer to the RGC responses than
two responses from the same cell. A similar problem is identified when evaluating
the responses the models.

Figures 5.16 and 5.17 present the evaluation of model responses with the spike
time and interspike interval metrics, for the salamander RGC responses to white
noise stimulus for the rabbit RGC responses to ON-OFF stimulus, respectively. The
figures present four values for the temporal precision of the metrics, where the
first corresponds to the spike count metric (q = 0 s−1). The three other values,
q ∈ {50, 100, 200} s−1 in Fig. 5.16 and q ∈ {150, 300, 400} s−1 in Fig. 5.17, were
chosen based on the method proposed in Sec. 5.4.4, i.e. using the null spike train
for comparison. In both figures, from left to right, the second value in the horizontal
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axis is well within the range of precision of the RGCs, the third is on the limit and
the fourth is beyond the temporal precision limit exhibited by the cells. Thus, in the
last case, q = 200 s−1 and q = 400 s−1, the model is asked to have a higher temporal
precision than the real neurons. As can be seen by analyzing the graphically depicted
values in the fourth column (q = 200 s−1 in Fig. 5.16 and q = 400 s−1 in Fig. 5.17),
the results are misleading: since all error bars are large, it seems that all models have
an erroneous behavior. This is however an erroneous conclusion. By comparing the
results using a smaller value of q, it can be concluded that some of the models have
a good behavior. Even the third column in Fig. 5.17, for q = 300 s−1, may induce to
error: since the value was chosen to be too close to the cell temporal precision limit,
the null spike train seems to be identical to one of the responses of the rabbit RGC.
These results further illustrate that the method presented in Sec. 5.4.4 should be
used to select the value of the metrics’ temporal precision; otherwise, the spike time
and interspike interval metrics give meaningless results. This conclusion can also be
drawn by using the spike time and the interspike interval metrics for the rabbit and
salamander RGCs’ responses, respectively.

To assess spike firing precision using large values of q for the spike time and in-
terspike interval metrics, i.e., close to the RGCs temporal precision, the spike count
metric must be used as an auxiliary measure. For example, consider measuring
the temporal precision of the models with the interspike interval metric using the
ON-OFF data (Fig. 5.17). By comparing the bars with q = 300 s−1, the determin-
istic/events model appears to be more precise than the deterministic/NMSE model.
However, by assessing the results with the spike count metric (q = 0 s−1), it can be
concluded that this is not true. In fact, the deterministic/events model fires almost
no spikes, so the error value for q = 300 s−1 is due to the creation of almost all
spikes. On the other hand, the deterministic/NMSE model has a spike count similar
to the one exhibited by the rabbit RGC, thus the error comes from shifting non-
coincident spikes (or, when these spikes are farther apart than 6.6 ms, to its removal
and re-creation). While other measures could detect this problem, like the spike train
distance with a large value for τ , the spike count metric is easier to implement and
provides insightful information.

The use of the spike events metric to tune the model parameters is also prob-
lematic. As shown in subsection Sec. 5.5.1, a small variation on spike timing or on
the identification of spike events can lead to large differences in the errors. In most
situations, the adopted simulated annealing scheme was able to overcome the local
minima. This was not however the case of the deterministic model trained with the
spike events metric, where the best obtained solution was to fire no spikes at all.

While the metric does not seem to be the most adequate for model tuning, it can be
used to assess model responses. Figure 5.18 and Fig. 5.19 present the obtained results
by evaluating the models with the spike events metric. As shown by the graphic, the
metric evaluates an interesting characteristic of the neural code: the capability for
the model to reproduce the bursts of spikes exhibited in the real neural responses.
This conclusion is drawn because the obtained error values are not correlated with
the results of the application of other neural metrics, namely: the spike time and
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Figure 5.18. Evaluation of model responses with the spike events metric; using the
salamander RGC responses for comparison (legend: model name/training method).
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Figure 5.19. Evaluation of model responses with the spike events metric; using the
rabbit RGC ON-OFF responses for comparison (legend: model name/training method).
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Figure 5.20. Evaluation of model responses with the spike train distance metric; using
the salamander RGC responses for comparison (legend: model name/training method).
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Figure 5.21. Evaluation of model responses with the spike train distance metric; us-
ing the rabbit RGC ON-OFF responses for comparison (legend: model name/training

method).
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Figure 5.22. Evaluation of model responses with NMSE metric; using the salamander
RGC responses for comparison (legend: model name/training method).
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Figure 5.23. Evaluation of model responses with the NMSE metric; using the rabbit
RGC ON-OFF responses for comparison (legend: model name/training method).
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interspike interval metrics; the spike train distance metric, whose results are presented
in Fig. 5.20 and Fig. 5.21; and the NMSE metric, presented in Fig. 5.22 and Fig. 5.23.
The results for the %VAF metric are not presented herein because the metric does not
only gives no additional information regarding the NMSE metric, and also degrades
the results; this was mathematically shown in Sec. 5.3.4.

Analyzing the obtained experimental results using the spike train distance metric,
the relevance of the proposed algorithms for selecting adequate parameters is further
demonstrated. For example, observing the error values for τ = 10 ms for the ON-
OFF data, presented in Fig. 5.21, for this small value of τ , i.e., for a high temporal
precision, larger than that of the real RGC, all models seem to have similar behaviors.
However, by increasing the value of τ , therefore also increasing the difference between
the inter-trial evaluation of the RGC responses and the cross-comparison with the null
spike train, it can be seen that the models have different behaviors. It should be noted
that, if the objective is to analyze the spiking temporal precision, the value of τ should
be small, since for a large value of τ this metric measures not the temporal precision
but the difference in the number of spikes [van Rossum, 2001; Tomás and Sousa,
2008].

Another characteristic common to several neural code metrics is that the absolute
value of the error presents no information by itself. Instead, in order to have a correct
understanding of the results, they must be compared with the inter-trial evaluation
of cell responses and the null spike train. A good example is the spike train distance
whose values are graphically presented in Fig. 5.20 and Fig. 5.21. While for the white
noise data (salamander RGC), the inter-trial errors are around 20, for the ON-OFF
data (rabbit RGC) these are around 60. This is due to the number of spikes in the
trains and to the cells’ variability. When these quantities increase so does the inner-
trial error; as a consequence, the error measures for the models must also increase.
It should be noted that the "perfect model" should reproduce the statistics of a real
neuron. Thus, the error measure when comparing with the real data should have the
same statistics as the inter-trial evaluation.

Analyzing all the graphically represented results, it can be concluded that, in
general, the usage of neural metrics for model training may lead to results that are not
good. To overcome this problem, other tuning methods, like the maximum likelihood
(ML) approach used to tune the SLIF model should be employed (see Sec. 4.2). In
this case, the optimization algorithm tries to maximize the likelihood for the model
to reproduce every spike, given the history of spikes, i.e. the timing of all previously
elicited spikes. While the maximum likelihood by itself is not a neural metric, it
represents a general statistical measure that can also be used for neural models.
In these cases, after parameter optimization, the model performance is evaluated
using the presented neural metrics. The experimental results obtained show that
the maximum likelihood approach can escape local minima generated by the neural
metrics, thus resulting in well-trained models.

In general, it can concluded from the presented results that a given metric assess
the performance of a model from a particular standpoint. As a result, more than one
metric should be used to address different aspects of the neural behavior, namely: i)
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a rate metric to compare the mean firing rate; ii) the spike count metric to compare
the difference in the number of spikes; iii) a spike train metric to assess the model’s
firing accuracy; and iv) the spike events metric to evaluate the model’s capacity to
reproduce the spike bursts. However, for the firing metrics, the %VAF should not be
used since its error decreases whenever the spike count metric error increases.

5.7. Conclusions

This chapter analyzes and compares different neural metrics to disclose their ad-
vantages and drawbacks by using sets of neuronal responses from the retina. Sub-
sequently, its application to the tuning and assessment of a set of retina models
provides important hints about its usefulness and applicability in the training and
evaluation of the models. In most cases the metric depends on a free parameter that
establishes its sensitivity to a particular characteristic of the neural code, so that an
incorrect choice of these parameters can lead to meaningless results. Hence, a set of
methods are proposed to define a valid range for the values of the different metrics’
parameters.

These methods are based on the statistical analysis of the inter-trials errors of the
real spike trains. The application of the neural metrics to the tuning and assess-
ment of retina models from distinct classes reveals important results. Some of the
analyzed metrics possess pronounced minima, specifically around the origin, which
makes the optimization process more difficult; nonetheless, generally these metrics
provide insightful results for the evaluation of models.

The understanding and choice of a neural metric is a crucial issue in the neural
sciences and neural modeling. In the evaluation of neural responses, the choice of
a metric is constrained by the neural features under analysis. In the optimization
and assessment of neural models, the chosen metric greatly influences the parameter
estimation and model performance. In most cases, the metrics are influenced by a pa-
rameter that affects its analysis of neural responses. In the case of spike train metrics,
this parameter defines the temporal precision of the metric; on the other hand, the
rate metrics are influenced by a parameter, or function, that defines the smoothing
mechanism used to estimate the neural responses’ firing rate. One of the problems
in the application of the error metrics is selecting the values for these parameters.
Therefore, methods to disclose limiting values for the parameters are proposed. In all
cases, the method consist of observing the evolution of the metrics’ values when ap-
plied in the inter-trial comparison of neural responses. However, the limiting values
obtained for the parameters are dependent on the neural responses; since different
cells present different temporal precisions, the values obtained for the parameters
also depend on the responses. By applying the neural metrics for assessing models’
responses, the importance of selecting adequate values for the metrics’ parameters
is revealed: when the parameters are not within the range of values defined by the
presented methods, the metrics produce meaningless results.

Another critical point in the application of neural metrics concerns the analysis
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of the results. As seen in the examples presented, when comparing neural responses
of the same neuron to the same stimulus, the error values are not zero, especially
in the case of spike train metrics. To assess the quality of a neural model using the
neural metrics, the errors obtained in the comparison of the model’s responses with
the real neuron responses must have the same statistics as the inter-trial errors of
the neuron’s responses. Moreover, for the modeling and tuning of a neural system, a
question can be raised: is the model unable to mimic the neural system under study
according to the intended metric or is the training algorithm simply unable to find
the correct set of parameters? In general, each metric is tied to a particular view of
the neural code. Consequently, the development and tuning of a neural model must
always have a particular underlying neural perspective. However, some metrics, such
as the spike time and the spike interval metric, which are suited for analyzing the
precision of neural responses, are difficult to use in the tuning of neural models.
This difficulty comes from the fact that they typically lead to local minima that,
from the experience with several neural responses and several models, are hard to
overcome. An alternate solution consists of applying other optimization techniques,
like the maximum likelihood optimization procedure, and apply the neuronal metrics
to assess the results.

Finally, it should be stressed that, in order to fully assess neurons’ and models’
responses, one must consider different metrics depending on the relevant quantity
under measure: rate metrics are used to compare mean firing rates, spike train metrics
assess temporal precision, and spike events metrics measure how well spike bursts
are reproduced. However, the %VAF metric should not be used, and the spike events
metric should be used cautiously due to its sensitivity to the event identification
procedure. The metrics should be applied with care, using the proposed methods to
select their parameter ranges.

The results presented in this chapter from the analysis of several retina models also
show that there is not a universal model capable of describing meaningful responses
for all types of visual stimuli existent in everyday life. In assessing the models, two
different types of visual stimuli were used. The deterministic flash or ON-OFF stimu-
lus represents geometrical images better, such as artificial landscapes like buildings or
text, while the random stimuli possess characteristics similar to natural landscapes,
like a forest [Dong and Atick, 1995]. Maybe the final answer to what model is better
can only be undoubtedly answered by performing experiments with real prosthesis
in humans. However, for sure the plasticity of the nervous system and its ability
to adapt and learn would play an important part [Fernández et al., 2005; Carmena,
2012].
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6
System Identification and

Parameters Estimation

6.1. Introduction

S
ystem modeling is a central task in science, and particularly in engineering.
There is no scientific knowledge area where modeling does not play an im-
portant role. Moreover, an independent scientific field is established when its

body of knowledge contains firstly a series of models, and subsequently a set of anal-
ysis techniques and modeling tools so that it can develop independently per se, e.g.,
physics, electronics and informatics.

This chapter is dedicated to the presentation and analysis of a system identification
technique that is based on multiple model adaptive estimators. This novel technique
can be applied in the identification of nonstationary linear and nonlinear systems.
This technique was briefly mentioned for a single parameter in [Martins, 2006]. Af-
terwards it was extended for the multidimensional case and applied to nonstationary
linear systems [Martins et al., 2011a,b], and it was also applied to the estimation of
nonlinear systems [Martins et al., 2013].

6.2. System Modeling and Identification

The goal of system modeling is to obtain an explicit mathematical expression for
the relation between the input and output signals, using experimental or natural
input-output data and possibly other available knowledge about the system. The
modeling process is usually achieved in two steps. First, a suitable mathematical
model, containing unknown parameters and/or functions, is selected to model the

167



6. System Identification and Parameters Estimation

relationship between the input and output signals, this phase is termed model spec-
ification. In a second step, termed model estimation, the model’s parameters and
functions are estimated by using the input-output data. The whole process is referred
as system identification. In the model specification process all prior knowledge and
information regarding the system is used to select an appropriate model. The model
estimation task employs estimation methods to obtain the parameters values in order
to maximize the accuracy of the resulting model predictions.

Various modeling tools and identification techniques have been developed and
used to model systems, linear or nonlinear [Ljung, 1999; Nelles, 2001]. Several tech-
niques have been specially extended and applied to model physiological systems that
are mainly nonlinear [Westwick and Kearney, 2003; Marmarelis, 2004]. Modeling of
physiological system is of paramount importance since it enables the understanding
of the mechanisms involved in the biologic process and to infer unobserved behaviors,
fundamental in the development of prosthesis.

Although that the model and the estimation technique are not completely inde-
pendent, sometimes the type of model used in system modeling is confused with the
technique employed in the estimation process. A linear or nonlinear model can be
classified in two major categories: static and dynamic models. Static models per-
form a direct mapping between the input signal vector u ∈ Rn and the output vector
y ∈ Rr. This relation is usually obtained by mapping the input into the output
possibly using basis functions like:

y =
M∑

i=1

αiΦi(u, βi), (6.1)

where the output vector y is modeled as a weighted sum of the M basis functions
Φi(.), with weights αi. The basis functions depend on the input and are parameter-
ized by a set of (non)linear parameters gathered in the vector βi. If the mapping is
nonlinear the basis functions are nonlinear and the parameters are nonlinear. Typical
basis functions are harmonic functions (e.g. sines and cosines functions [Davis, 1989]),
polynomials (e.g. splines [De Boor, 2001], Laguerre polynomials [Rugh, 1981]), sig-
moidal functions (used in neural networks, e.g. logistic function, hyperbolic func-
tions [Haykin, 1999]). The basis functions formulation can be further extended by
replacing each weight by a function [Nelles, 2001].

An alternative to static models are dynamic models. Typically a dynamic model
describes the system using differential (or integral) equations in the continuous case,
or difference equations, in the discrete-time case. The word dynamic relates to the
fact that the output at a given time instant depends on the input signal at the current
and on previous time instants, such as the retina model presented in Sec. 4.2.

The typical approaches to system modeling are the parametric and nonparametric
modeling [Nelles, 2001; Ljung, 1999]. In the parametric approach the input/output
relation is described with a finite number of parameters. A typical example is to
model this relationship by differential, or difference, equations for dynamic systems
and by algebraic models for static systems. The models’ parameters can be constant
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Parametric Nonparametric Modular Connectionist
Model specification - + ± ±
Interpretability + ± + -
Robustness to noise - + + ±
Compactness + - + -
Adaptable to time variance ± + ± +

Table 6.1. System modeling methodologies: strengths (+) and weaknesses (-)
(from [Marmarelis, 2004]).

or time-varying depending if the model is stationary or nonstationary. Frequently,
the parameters are related with some physical process that describes the system. In
the nonparametric approach the system can be modeled analytically with an inte-
gral equation where the unknown quantity are the kernel functions, like in Volterra-
Wiener expansions [Rugh, 1981], or through a computing mapping like look-up tables
or an infinite impulse response.

In the modeling of physiological systems two additional approaches are distin-
guished, namely the modular and the connectionist approach [Marmarelis, 2004].
The modular approach is an hybrid between the parametric and nonparametric ap-
proach. It uses block structured models composed of parametric and nonparametric
components reflecting the knowledge about the functional organization of the sys-
tem. The connectionist approach makes use of generic model configurations and
architectures, like artificial neural networks, to represent nonlinear mappings. The
connectionist models are fully parameterized but lack the interpretability of the mod-
els’ parameters opposed to the parametric modeling.

Table 6.1 resumes the strengths and weaknesses of different modeling methodolo-
gies. Desirably, a model should be: accurate –reproduce the observed data from
the input signal; global – accurate under natural working conditions; compact – low
mathematical and computational complexity; interpretable – it should give insight
into the working mechanisms of the system; robust to the presence of external and
internal noise processes. In the model specification stage the prior information about
the system is used to select an adequate model, and a suitable estimation method
for each case is applied to optimize the accuracy of the model for different data types
and noise scenarios. The model accuracy can be accessed using different measures
and norms, depending on the system type and purpose of the model.

The method to be proposed for the identification of is based on a parametric dy-
namic model for the system. This approach has the advantage that if the parameters
are related with some physical process describing the system one can have an initial
guess for its values.

6.2.1. State Space Representation

The state-space representation of dynamic systems provides a consistent framework
for describing and analyzing systems of any degree of complexity that has shown to
be very convenient. Models of physical, chemical, economic, and biological systems
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can be described as assemblages of interconnected first-order differential equations
or by higher order differential equations that can be transformed in the former. A
scalar nth-order differential equation, or difference equation, can be decomposed into
n first order ordinary differential, or difference, equations or, equivalently, by a single
first order differential, or difference, vector equation of dimension n. This constitutes
the core representation of a dynamic system in the state-space framework.

In the state-space representation the dynamic model of a general nonlinear discrete
time-varying system is described by the vector difference equation:

x[t + 1] = f (x[t], u[t], ξ[t], γ[t], t) , t = 0, 1, 2, . . . , (6.2)

where x[t] ∈ Rn is the vector of the system’s state variables at the time instant t, and
u[t] ∈ Rm is the input signal that drives/controls the system, and ξ[t] ∈ Rp accounts
for the system’s disturbance noise. The vector γ[t] ∈ Rr represents the time-variable
system’s parameters vector.

The system’s output vector is written as:

y[t] = g (x[t], u[t], ξ[t], γ[t], t) , (6.3)

where y[t] ∈ Rr. The nonlinear observation of the system’s state variables degraded
with noise is modeled as:

z[t] = h (y[t], θ[t], t) , (6.4)

where z[t] ∈ Rr is the observations vector, and θ[t] ∈ Rr is the noise associated with
the measurements. The uncertainties in the process and the system and observation
noises are characterized by:

E{x[0]} = x̄0 cov[x[0]; x[0]] = Σ0 (6.5)

E{ξ[t]} = 0 cov[ξ[t]; ξ[τ ]] = Ξ[t]δtτ (6.6)

E{θ[t]} = 0 cov[θ[t]; θ[τ ]] = Θ[t]δtτ (6.7)

where x[0], ξ[t], θ[t] are assumed to be independent for all t. The statistical indepen-
dence between samples of the process and observation noises indicate that they are
white noise. In the case of non-white noise the system and/or observation dynamics
can be extended to include a pre-whitening process [Orfanidis, 1990; Simon, 2006].

For the case of a linear system with linear observations Eq. (6.2) and Eq. (6.3),
can be written as:

x[t + 1] = Ax[t] + Bu[t] + Lξ[t], t = 0, 1, 2, . . . , (6.8)

and
z[t] = Cx[t] + θ[t], (6.9)

respectively. Thus, as for the output, the simplest case occurs when the output is
equal to the state variables vector: y[t] = Inx[t], where In is the identity matrix of
order n.
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6.3. Multiple Model Adaptive Estimators

The identification method proposed is based on the multiple-model adaptive estima-
tion (MMAE) algorithm. The MMAE algorithm is a versatile and powerful algorithm
frequently used in system identification and state estimation problems. It was de-
veloped some decades ago [Magill, 1965; Lainiotis, 1971] but conquered a renewed
and consistent interest over time [Athans and Chang, 1976; Hanlon and Maybeck,
2000] and as seen some substancial developments in the recent years [Aguiar, 2007;
Hassani et al., 2009c,a]. The MMAE has been used in a profusion of practical ap-
plications like navigation control [Eide and Maybeck, 1996], adaptive robust con-
trol [Fekri et al., 2006], surveillance systems [Reid, 1979], biomedical applications
[Yu et al., 1992], to name a few.

By following a Bayesian analysis of the system state using the input and output
signals, and possibly some available observations of the state variables, the MMAE

provides a way to recursively calculate the probability of each model, from a set of
models, to represent the system under identification. In the most usual application
the set of models is pre-established and fixed, and the MMAE combines the posterior
probabilities and the state estimates obtained from each model to estimate the overall
system state and its parameters [Anderson and Moore, 2005].

Departing from the traditional utilization the constellation based multiple-model
adaptive estimation (CBMMAE) iteratively constructs a set of models that, based
on the values of their posterior probabilities, is adaptively conformed to lower the
posterior error covariance matrix. This new method is capable of identifying with
precision the system under analysis and provides an estimate for the unknown param-
eters. Since the set of models is adaptively adjusted to search the parameter space
for the model that best mimics the system, when the system’s parameters change
the algorithm is able to adjust the models to the new system configuration that is
eventually identified, and its new parameters estimated.

6.3.1. MMAE Algorithm Setup and Properties

The MMAE is composed by a bank of state estimators based on a set of models for
the system, also called local observers. These estimators run in parallel and provide
a local estimate for the system state. Additionally, the MMAE contains a (posterior)
probability evaluator block that based on the individual estimates and on the error
covariance matrices, computes the likelihood of each model of representing the sys-
tem, and computes the overall system state by weighting the individual estimates.
Each estimator is designed using one element of a set of models that represents the
possible different system’s behavior patterns. A crucial issue in the utilization of the
MMAE is the adequate selection of models to be used in the bank of estimators.

The MMAE algorithm follows a Bayesian approach to obtain the posterior probabil-
ities for the set of models based on the state and covariance estimate from each model.
The combination of the posterior probabilities gives the estimate of the true system
state and its error covariance matrix [Athans and Chang, 1976; Anderson and Moore,
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Figure 6.1. The MMAE algorithm block diagram.

2005].
Employing N estimators in the MMAE setup the posterior probability for the model

k to represent the system is computed recursively through the expression:

Pk[t + 1] =
βk[t + 1] e− 1

2
wk[t+1]

N∑

j=1

βj [t + 1] e− 1
2

wj [t+1] Pj[t]

Pk[t], k = 1, . . . , N, (6.10)

where the scalar quantity wk[t] is given by:

wk[t] = ||rk[t]||S−1
k

[t] = rT
k [t]S−1

k [t]rk[t], (6.11)

which defines a matrix induced metric, and βk[t] is defined by:

βk[t] =
1

(2π)m/2
√
|Sk[t]|

. (6.12)

The vector rk[t] in Eq. (6.11) is the residual between the observed z and the predicted
vector ẑ of observations from model k:

rk[t] = z[t]− ẑk[t], (6.13)

172



6.3. Multiple Model Adaptive Estimators

and Sk[t] is the residual covariance matrix with determinant |Sk|.
Based on N different models, each estimator generates a state estimate x̂k[t], that

are combined to compute the overall system state estimate given by:

x̂[t] =
N∑

k=1

Pk[t]x̂k[t], (6.14)

where Pk[t] is the posterior probability for model k given by Eq. (6.10). The state
covariance error matrix is updated according to the recursive expression:

Σ[t] =
N∑

k=1

Pk[t]
(
Σk[t] + (x̂k[t]− x̂[t]) (x̂k[t]− x̂[t])T

)
. (6.15)

An important property of the MMAE algorithm is that if the ith model matches
the system then the posterior probabilities of the models evolve according to:

lim
t→∞

Pi[t] = 1; while lim
t→∞

Pk[t] = 0; ∀k 6= i. (6.16)

Equation (6.16) states that if there is a model that matches the system then it is
identified with probability one, while the posterior probabilities of the other models
go to zero [Baram and Sandell, 1978; Hassani et al., 2009b]. It should be noted that
from Eq. (6.10) if one starts with

∑N
k=1 Pk[0] = 1 then

N∑

k=1

Pk[t] = 1, ∀t. (6.17)

A remarkable key property of the MMAE algorithm is that if none of the models
match the system then the posterior probability of the closest model according to the
matrix induced metric, expressed by Eq. (6.11), tends to one [Moore and Hawkes,
1975; Athans and Chang, 1976].

The system parameters vector estimate and its covariance matrix are computed
from:

γ̂[t] =
N∑

k=1

Pk[t]γk, (6.18)

Σγ̂[t] =
N∑

k=1

Pk[t]
(
γk − γ̂[t]

)(
γk − γ̂[t]

)T
. (6.19)

6.3.2. The Multiple Model Adaptive Estimator for Nonlinear
Systems

Similarly to its application in linear systems the MMAE algorithm for nonlinear sys-
tems comprises three stages: estimation of the system state for each vector of param-
eters corresponding to each different configuration, the evolution of the individual
probabilities for each system configuration, and combination of the individual es-
timates to obtain the overall estimation of the system state and of the parameter
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vector. The update of the different hypothesis probabilities, given in Eq. (6.10), is
obtained by developing the dynamic evolution of the probabilities given by:

Pk[t + 1] =
p(z[t + 1]|γk, Z[t])

N∑

i=1

Pi[t]p(z[t + 1]|γi, Z[t])

Pk[t], (6.20)

where Z[t] = {u[0], u[1], . . . , u[t−1], z[1], . . . , z[t−1]} is the set of previous inputs and
past observations, and γi is the current vector of parameters. This expression can be
derived by making no assumption on which type of system is considered so that it
is valid both for linear and nonlinear systems [Athans and Chang, 1976]. However,
the posterior probability density p(z[t + 1]|γk, Z[t]) cannot be obtained exactly for
nonlinear systems, and it can only be approximated with a sub-optimal filter, like the
extended Kalman filter (EKF) or the unscented Kalman filter (UKF), for computing
the state estimates x̂k[t|t] and Σ[t|t]. The optimum state estimate and its covariance
matrix are also given by Eq. (6.14) and Eq. (6.15). The selection of the type of
the non-optimal filter is usually based on the physical problem, on the performance
required, and on the available computer resources.

An algorithm similar to MMAE is the Gaussian Sum (GS) filter [Anderson and Moore,
2005]. The GS filter was developed for estimation of the non-gaussian probability den-
sity of the system state propagated by nonlinear systems by a finite sum of Gaussian
functions, each having a different mean and covariance [Alspach and Sorenson, 1972].
Although the GS filter is based on different assumptions and follows a different phi-
losophy concerning the MMAE algorithm, its structure is identical to the MMAE. The
original GS filter explicitly employs the EKF for each estimator in Fig. 6.1 to obtain
the individual state estimates, x̂k[t|t], and the state covariance matrices, Σ[t|t], of
each system model that are then mixed according to:

p(x[t]|Z[t]) =
N∑

k=1

αkN(x[t]; x̂k[t|t], Σ[t|t]), (6.21)

to compute the current state probability density function. Recent developments of
the GS filter also uses the UKF as the state estimate [Gabriel et al., 2012]. The values
for the weights, αk, of each Gaussian density in the mixture are obtained by the
same expression of Eq. (6.10) (where now αk(t) = Pk(t)), although αk is no longer
interpreted as a probability. Similarly to Eq. (6.17) the properties:

N∑

k=1

αk[t] = 1, and αk[t] ≥ 0, ∀t, (6.22)

still hold. In the GS the overall state estimate and the error covariance matrix are
also obtained from Eq. (6.14) and Eq. (6.15).

These results allow us to anticipate that by employing sub-optimal state estimators
the MMAE can be applied to the identification and parameters estimation of nonlinear
systems.
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Figure 6.2. Block diagram of the multiple model adaptive estimator and constellation
adapter.

6.4. Constellation Based Multiple Model Adaptive

Estimators

The standard approach to system identification using the MMAE algorithm is to pro-
vide an exhaustive set of models that represent every possible system configuration
and let the MMAE pick up the true one by observing the evolution of the individual
posterior probabilities [Anderson and Moore, 2005]. A disadvantage of this approach
is that the convergence of the MMAE can be slow when the system has a large number
of possible different configurations, since each model equally compete for the posterior
probabilities even knowing that some of the modes are unlikely, with the additional
drawback that, depending on the number of models used, the computational burden
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can become very high. An approach proposed to circumvent this drawback is the
use of a variable structure for the estimators bank in the MMAE by including along
the way only the most probable models from a preestablished set based on a Markov
law [Li and Bar-Shalom, 1996]. This approach is somewhat complex since the prob-
abilities for each intermediate step need to be computed from the Markov law, and
the number of models and possible different structures can be large.

The approach followed in the constellation based multiple-model adaptive estima-
tion (CBMMAE) is to establish a minimum set of models in the unknown parameter
space, to be used in the estimators bank of Fig. 6.1, that are properly designed,
whose parameters are adapted according to the convergence path followed by the
posterior probabilities for each model. Therefore, relying on the properties of the
MMAE algorithm expressed by Eq. (6.16), a method is proposed to establish a min-
imum set of models to be employed in the estimators bank, and a strategy to up-
date its parameters so that the system is eventually identified and its parameters
tuned [Martins et al., 2011a].

The performance of the algorithm is analyzed for different scenarios, that includes
a linear stationary and nonstationary system and a nonlinear system.

The algorithm starts with a base model for the system and a suitable range of values
for each of the unknown parameters. Therefore, with this base model, a set of models
with values for their parameters positioned in specific positions in the space spanned
by the unknown parameters, termed a constellation, is designed. The cardinality
of the models constellation depends only on the number of unknown parameters.
This constellation of models is used on the bank of estimators of the MMAE. Thus,
by analyzing the posterior probabilities given by the MMAE, the constellation of
models is succeedingly shifted on the parameter space until the region containing the
system’s parameters is found. When the region where the system’s parameters dwell
is identified the constellation’s volume is shrunk by reducing the intervals’ range for
its parameters, fine-tuning this way the parameters estimation.

Due to its adaptive nature the algorithm is able to detect changes in the system’s
parameters so that it can adjust to new system configurations for the case of nonsta-
tionary systems. The use of the CBMMAE algorithm is not restricted to linear systems
and can be used in the identification of nonlinear systems by using the appropriate
state estimator, optimal or non-optimal, respectively, and by taking into account the
common constraints related to the nonlinear systems.

Establishing a convenient set of models, termed a constellation, for the estimators
bank of the MMAE algorithm one knows that the posterior probability of the model
closest to the unknown system according to the induced matrix metric expressed
by Eq. (6.11), will tend to one according to the property expressed by Eq. (6.16).
Starting with a constellation of models in the unknown parameter space, whenever
the posterior probability of a given model is identified with probability close to one,
the constellation is moved on the parameter space into the direction of that point.
Repeating this process the unknown system parameters’ point ends inside the con-
stellation’s volume. At this phase the system parameters are identified with an error
equal to the radius of the constellation. After bracketing the system parameters’
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Figure 6.3. Constellation topology and evolution in a two-dimensional parameter space:
1- initial constellation setup; 2- tracking and bracketing; 3- shrinking.

point, the constellation can be shrunk to refine the parameters estimation. In the
meantime, in the case of a nonstationary system, if the system parameters’ point
changes its position on the parameter space then it is no longer bracketed and the
algorithm can be initialized to track the new system parameters’ point until it is
bracketed again, and afterwards the constellation volume can be reduced to refine
the estimate of the unknown parameters.

The CBMMAE algorithm can be divided into three main stages : i) constellation
design – establish a proper set of models in the space of unknown parameters; ii)
tracking and bracketing – search the parameter space, by moving the models constel-
lation, to localize the region containing the system parameters; iii) shrinking process
– reduce the volume of the constellation. These steps are illustrated graphically
in Fig. 6.3 for the case of a search in a two-dimensional parameter space.

6.4.1. Design of the Models Constellation

The steps of CBMMAE algorithm are illustrated in Fig. 6.3. The first step is the
design of a constellation of models in the space spanned by the unknown parame-
ters. Afterwards, the constellation of models is shifted on the parameter space by
analyzing the posterior probabilities for each of its models until the system’s param-
eters point is enclosed inside the constellation’s volume. To track and enclose the
system parameters point the constellation’s topology must have the properties: i)
possess a finite volume, different from zero; ii) and have an interior point. The first
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property assures that the position of the system parameters’ point can be localized
inside a delimited region in the parameter space, which implies that for a space of n
parameters one needs to have a constellation with at least n + 1 distinct points. The
interior point enables the algorithm to detect when the system’s parameters point is
localized inside the constellation volume by checking when the posterior probability
of the corresponding model approaches one.

A simple topology that has the characteristics listed before is an hypercube with a
center point. For a n-dimensional space an hypercube has 2n points, corresponding
to its vertices, plus a center point, giving a constellation with a total of N = 2n + 1
points. Figure 6.3 displays an hypercube topology in step 1, with a central point
for the initial constellation, for a two-dimensional parameters space. Hence, in the
two-dimensional case one has a constellation with N = 5 models with parameters
pairs’ coordinates in the space spanned by the unknown parameters denoted by:

{[
γ11 γ21

]
;
[
γ11 γ22

]
;
[
γ12 γ21

]
;
[
γ12 γ22

]
;
[
γ1c γ2c

]}
, (6.23)

where
[
γ1c γ2c

]
is the center point, and

[
γt

1 γt
2

]
is the vector of system parameters,

γ, to be estimated.
If the parameters’ ranges are known a priori the two-dimensional topology points

can be initialized with the extreme values for their intervals. For example, if it is
known that the parameter γ1 is in the interval γ1 ∈ [a, b], and γ2 is in the interval
γ1 ∈ [c, d], the hypercube constellation can be initialized with the values:

[
γ11 γ12

]
=
[
a b

]
, and

[
γ21 γ22

]
=
[
c d

]
, (6.24)

and the center point of the topology can be chosen to have the values:

[
γ1c γ2c

]
=
[

γ11+γ12

2
γ21+γ22

2

]
. (6.25)

The choice of values for the parameters of the initial constellation is flexible since the
tracking and shrinking stages automatically adjust the parameters’ range to more
suitable values. Hence, if the initial parameters’ range are unknown they can be
initialized with a suitable interval.

6.4.2. System Identification and Parameters Estimation

To explore the parameter space each point in the topology is associated with one
of the N estimators in the MMAE algorithm. Figure 6.2 displays the CBMMAE

architecture, where a constellation adapter block is added to the standard MMAE

structure. Like in the utilization of the MMAE in classical multiple-model adaptive
control [Fekri et al., 2006], this block is added in a purely ad-hoc manner. Due to
the property of the MMAE of Eq. (6.16), the posterior probability of the model whose
parameters are closer to the true system with respect to the induced matrix met-
ric tends to one. When the posterior probability of a model reaches a pre-establish
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threshold value close to one, Pi ≥ Pth, meaning that this particular model is identi-
fied as the closest to the true system. Taking as an example the initial constellation
depicted in Fig. 6.3, and considering the more intuitive euclidian metric for the case,
it is the model corresponding to the point

[
γ12 γ22

]
that is identified as being the

closest to the true system point,
[
γt

1 γt
2

]
, by the MMAE algorithm. Therefore the

constellation is moved towards the system point by translating the whole constel-
lation by positioning its center point,

[
γ1c γ2c

]
, at the position of the last point

identified as the closest to the system point. By repeating this procedure the models
constellation will move on the parameter space until the center point,

[
γ1c γ2c

]
, is

identified as being the closest to the system parameters’ point,
[
γt

1 γt
2

]
, that ends

located inside the constellation’s volume – the system parameters’ point is bracketed.
During the process of translation the points of the constellation keep their relative
positions. The tracking and bracketing stage is illustrated by the step 2 in Fig. 6.3.

If the goal is to identify the system among a set of several possible configurations
the tracking process is able to identify the system by identifying the region in the
parameter space where the system point is located. This is useful when the system
can have a high number of possible different configurations, which in many cases
precludes the application of the standard MMAE algorithm directly by using every
possible system configuration. In the CBMMAE just 2n + 1 models are needed, where
n is the number of variable parameters, and the system is identified with an error
equal to the intervals used for the model’s parameters in the constellation, which is
preestablished so that the system can be identified with the required precision.

However, if it is intended to estimate the system’s parameters the models param-
eters’ ranges in the constellation are systematically reduced. Whenever the true
system is bracketed the volume of the constellation can be reduced by a shrinking
process to refine the parameters estimation. A straight method for shrinking the
constellation is to multiply each parameter interval by a scale factor λ < 1, and by
keeping the previous constellation’s interior point in the same position. Figure 6.3
illustrates the constellation shrinking process in step 3. Using the shrunken con-
stellation in the MMAE the system point is tracked and bracketed again, as before,
by analyzing the evolution of the posterior probabilities. By successively repeating
the tracking and shrinking stages it is possible to identify the system and refine the
estimation of the unknown system parameters. For a single parameter the shrinking
process can be optimized by successively dividing the parameter’s interval using the
golden ratio [Martins, 2006].

The tracking process can be made faster by using a constellation with a high
volume rather than by using a small constellation, however the subsequent shrinking
process would take more steps. Another important remark of the CBMMAE approach
is that the number of models used in the constellation does not depend on the number
of possible different configurations of the system, as in the standard application of
the MMAE, but on the number of system’s parameters that can actually vary. The
hypercube constellation is optimal in terms of the number of models since it has the
least number of models (plus one) relative to the number of unknown parameters.
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In the usual application of the MMAE a system with n independent parameters that
can take m different values, uses:

N = mn (6.26)

models for the estimators bank, that excludes its usability in many situations. How-
ever, in the CBMMAE using an hypercube constellation one always needs

N = 2n + 1 (6.27)

models, irrespective of the different values that the system’s parameters can have,
which corresponds to the minimum value that m can take in Eq. (6.26): m = 2.
Therefore, the CBMMAE is also suited to the identification and parameters’ estima-
tion of systems whose parameters can vary continuously. Another remark about the
CBMMAE is that its extension to a higher dimensional parameter space is straightfor-
ward by simply using, for example, an hypercube constellation with a central point.

6.4.3. Application to Nonstationary Systems

Due to the adaptive nature of the constellation the CBMMAE can be applied to the
estimation of time-varying system parameters provided that the system’s parameters
change is less frequent than the time convergence of the algorithm.

In the CBMMAE whenever a vertex of the hypercube is identified as being the
nearest to the true model the hypercube is re-centered on that point and its volume
is kept unchanged. This process is repeated until the tracking process is completed.
If the system parameters keep changing the constellation keeps moving around the
parameter space until the system’s parameters remain fixed sufficient time to be
bracketed and estimated.

Once the true system parameter point is bracketed the constellation is shrunk to
refine the parameters estimation. In the meanwhile, if the system parameters change
to another point in space, the MMAE algorithm identifies successively one of the
models on the hypercube’s vertices as the nearest to the true system, which is an
indication that the system point has moved.

After being tracked, and for a shrinking scale factor of λ = 0.5, which is equivalent
to reduce the parameters intervals to half, if the constellation is shifted twice after
being bracketed it means that the system’s parameters point has moved. So the
changing of the system parameters can be detected by counting the number of times
the constellation is translated after the bracketing of system parameters’ point. By
using a general shrinking scale factor λ < 1, the change of the system parameters’
point can be detected after being bracketed if a hypercube vertex is consecutively
selected L ≥ ⌈1/λ⌉ times as the nearest to the system point. In a nonstationary
system, after detecting that the system parameters point has moved, the constellation
can be re-initialized to its initial volume, and optionally to its original position in
the parameter space, to track the new system parameters’ vector.
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6.5. System State Estimators

The MMAE algorithm, and consequently the constellation based identification algo-
rithm, relies on the estimation of the state of the system under analysis using a series
of local estimators. In the case of linear systems the Kalman filter (KF) is the most
commonly applied optimal state estimator [Gelb, 1974].

Optimal state estimation is considerably more difficult when the system contains
nonlinear elements since the shape of the probability density functions of the signals
and noise are altered as they are processed by the nonlinear elements. Therefore, the
mean and standard deviation are incomplete descriptors of the probability density
function, and the state estimate based on the conditional mean may be different from
the one obtained based on the mode or median [Stengel, 1994].

For the state estimate of nonlinear systems there are several possible options, some
more adequate than others depending on the characteristics of the problem [Simon,
2006]. To apply the CBMMAE algorithm to the identification and parameter esti-
mation to nonlinear systems the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) are employed as the state estimators. The adoption of subopti-
mal state estimators can produce satisfactory results because the random signals are
summed in the estimators, and its is assured by the central limit theorem that the
probability density functions of the sums tend to become Gaussian irrespective of
the individual distributions of the signals. Moreover, the estimation process contains
integration and/or summations, which tend to average out the non-Gaussianities,
smoothing the effects of the nonlinearities in producing the state estimators.

Next, the different used types of optimal (KF) and suboptimal (EKF and UKF)
state estimators are briefly reviewed.

6.5.1. The Kalman Filter

For a discrete time-invariant linear system, with linear observations, Eq. (6.2) and
Eq. (6.4) can be written as:

x[t + 1] = Ax[t] + Bu[t] + Lξ[t], t = 0, 1, 2, 3, . . . , (6.28)

z[t] = Cx[t] + θ[t], t = 1, 2, 3, . . . . (6.29)

The system’s dynamics and the associated observations are represented in the block
diagram of Fig. 6.4, where z−1 represents a unit discrete-time delay.

The Kalman filter (KF) provides a recursive way to obtain the estimate of the state
and the associated error covariance matrix of a linear system using the previous
estimate of the system state and the current observations (of some) of the state
variables [Gelb, 1974]. The estimation process is separated into a predict cycle and
an update cycle. In the predict cycle the predicted state estimate, denoted by x̂[t+1|t],
and the predicted covariance error matrix, denoted by Σ[t + 1|t], at the time instant
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Figure 6.4. Block structure of a linear system dynamics in state-space.

t + 1, are predicted using the previous state estimate x̂[t|t] and the last input to the
system, u[t], by:

x̂[t + 1|t] = Ax̂[t|t] + Bu[t], (6.30)

Σ[t + 1|t] = AΣ[t|t]AT + LΞLT, (6.31)

respectively, where x̂[t|t] is the updated state estimate, and Σ[t|t] is the updated
error covariance matrix at the time instant t.

In the update cycle, the state estimate is updated using the new observation vector,
z[t + 1], according to:

x̂[t + 1|t + 1] = x̂[t + 1|t] + H[t + 1]r[t + 1], (6.32)

where the Kalman filter gain, H[t+1], and the residual, r[t+1], defined in Eq. (6.13),
are given respectively by:

H[t + 1] = Σ[t + 1|t + 1]CTΘ−1, (6.33)

and
r[t + 1] = z[t + 1]−Cx̂[t + 1|t]. (6.34)

The residual vector r[t] has zero mean:

E{r[t]} = 0, (6.35)

and covariance:
S[t + 1] = CΣ[t + 1|t]CT + Θ. (6.36)

The state covariance matrix is updated according to:

Σ[t + 1|t + 1] = Σ[t + 1|t]−Σ[t + 1|t]CTS[t + 1]−1CΣ[t + 1|t]. (6.37)

The state estimate and the error covariance matrix equations can be propagated
using the initial conditions x̂[0|0] = E{x[0]}, and Σ[0|0] = cov[x[0]; x[0]].

182



6.5. System State Estimators

6.5.2. The Extended Kalman Filter

When the system dynamics and/or the observation equations are not linear a subopti-
mal state estimator must be used. The extended Kalman filter (EKF) is a widely used
nonlinear estimation technique. It follows the Kalman filter reasoning by linearizing
the system dynamics and the observation equations by picking up the linear terms of
its Taylor series expansion about the current state estimate [Anderson and Moore,
2005; Simon, 2006].

Considering the nonlinear system dynamics of Eq. (6.2) the predicted state esti-
mate and the error covariance matrix are given by:

x̂[t + 1|t] = f(x̂[t|t], u[t], 0, t), (6.38)

Σ[t + 1|t] = Â[t]Σ[t|t]ÂT[t] + L̂[t]Ξ[t]L̂T[t], (6.39)

where the Jacobian matrices of the dynamics are defined as:

Ân×n[t] =
∂f(x, u, ξ, t)

∂x

∣∣∣∣∣
x=x̂[t|t],ξ=0

,

L̂n×p[t] =
∂f(x, u, ξ, t)

∂ξ

∣∣∣∣∣
x=x̂[t|t],ξ=0

.

(6.40)

After a nonlinear observation, expressed by Eq. (6.3), the state estimate is also
updated according to Eq. (6.32), however, the Kalman filter gain is computed from:

H[t + 1] = Σ[t + 1|t + 1]ĈT[t + 1]
[
D̂[t + 1]Θ(t + 1)D̂T[t + 1]

]−1
(6.41)

where the Jacobian matrices for the nonlinear observation equation are given by:

Ĉm×n[t + 1] =
∂h(x, θ, t)

∂x

∣∣∣∣∣
x=x̂[t+1|t],θ=0

,

D̂m×m[t + 1] =
∂h(x, θ, t)

∂θ

∣∣∣∣∣
x=x̂[t+1|t],θ=0

.

(6.42)

The residual is:
r[t + 1] = z[t + 1]− h(x̂[t + 1|t], 0, t + 1), (6.43)

whose covariance is obtained from:

S[t + 1] = Ĉ[t + 1]Σ[t + 1|t]ĈT[t + 1] + D̂[t + 1]Θ[t + 1]D̂T[t + 1]. (6.44)

The system state error covariance matrix is updated according to:

Σ[t + 1|t + 1] = Σ[t + 1|t]−Σ[t + 1|t]ĈT[t + 1]S[t + 1]−1Ĉ[t + 1]Σ[t + 1|t]. (6.45)

Like in the KF the initial conditions to propagate the state estimate equation are
x̂[0] = E{x[0]}, and Σ[0|0] = cov[x[0]; x[0] for the error covariance matrix.

183



6. System Identification and Parameters Estimation

6.5.3. The Unscented Kalman Filter

Instead of propagating the state statistics through the nonlinear system dynam-
ics and/or through the nonlinear observation equation, the unscented Kalman fil-
ter (UKF) obtains the state statistics from a minimal set of sample points, called
sigma points, that are propagated through the nonlinearities [Julier and Uhlmann,
1997, 2004].

The UKF filter is based on the unscented transform that permits to calculate the
mean and covariance of a nonlinear transformation of a random variable [Julier,
2002]. Starting with a n-dimensional random variable x, with mean vector x̂ and
covariance matrix Σxx, a set of 2n + 1 points, termed sigma points, are obtained
from the expressions:

x0 = x̂, W0 = κ/(n + κ);

xi = x̂ +
(√

(n + κ)Σxx

)T

i
, Wi = 1/2(n + κ);

xi+n = x̂ −
(√

(n + κ)Σxx

)T

i
, Wi+n = 1/2(n + κ);

(6.46)

where xi are the sigma points and Wi are their respective weights to be used in the
unscented transform. The parameter κ ∈ R is used to fine tune the higher order

moments statistics, and
(√

(n + κ)Σxx

)
i

is the ith row of the square root matrix of

(n + κ)Σxx.
Transforming each sigma point by the nonlinearity:

yi = f [xi], (6.47)

the mean and covariance of the transformed random variable y are approximated by:

ŷ =
2n∑

i=0

Wiyi, (6.48)

and

Σyy =
2n∑

i=0

Wi(yi − ŷ)(yi − ŷ)T. (6.49)

For a nonlinear system with nonlinear observation equation, as described by Eq. (6.2)
and Eq. (6.4), respectively, the UKF filter starts by calculating the sigma points
and weights according to Eq. (6.46), where the current state has the mean vector
x̂[t|t], and the covariance matrix Σ[t|t]. If the system noise ξ[t], and/or the ob-
servation noise θ[t], are not additive the state vector can be augmented to xT

a [t] =[
xT[t] ξT[t] θT[t]

]
, to include the noise dynamics, so that the state mean vector

becomes:

x̂a[t|t] =




x̂[t|t]
0
0


 , (6.50)
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and the respective covariance matrix is:

Σa[t|t] =




Σ[t|t] 0 0
0 Θ[t] 0
0 0 Ξ[t]


 . (6.51)

The predicted state estimate is computed from:

x̂[t + 1|t] =
2n∑

i=0

Wix̂i[t + 1|t], (6.52)

where x̂i[t + 1|t] are the transformed sigma points by the nonlinearity:

x̂i[t + 1|t] = f(x̂i[t|t], u[t], 0, t). (6.53)

The predicted state covariance matrix is given by:

Σ[t + 1|t] =
2n∑

i=0

Wi (xi[t + 1|t]− x̂[t + 1|t]) (xi[t + 1|t]− x̂[t + 1|t])T + Ξ[t]. (6.54)

To update the estimate given a new observation a new set of sigma points is gen-
erated from Eq. (6.46) using the predicted state estimate x̂[t + 1|t] and the predicted
covariance matrix Σ[t + 1|t]. Then the predicted observation is obtained from:

ẑ[t + 1|t] =
2n∑

i=0

Wiẑi[t + 1|t], (6.55)

where the observations vectors ẑi are obtained with the sigma points transformed by
the observation equation:

ẑi[t + 1|t] = h(x̂i[t + 1|t], 0, t + 1). (6.56)

The residual covariance matrix is obtained from:

S[t + 1] =
2n∑

i=0

Wi (zi[t + 1|t]− ẑ[t + 1|t]) (zi[t + 1|t]− ẑ[t + 1])T + Θ[t] (6.57)

In statistical terms the Kalman gain is given by:

H[t + 1] = Σxz[t + 1|t + 1]S−1[t + 1]. (6.58)

The updated error covariance matrix is computed from:

Σ[t + 1|t + 1] = Σ[t + 1|t]−H[t + 1]S[t + 1]HT[t + 1]

= Σ[t + 1|t]−H[t + 1]ΣT
xz[t + 1],

(6.59)

where the cross covariance of the state and the observation is estimated with:

Σxz[t + 1] =
2n∑

i=0

Wi (xi[t + 1|t]− x̂[t + 1|t]) (zi[t + 1|t]− ẑ[t + 1])T . (6.60)

As before, the updated state estimate is given by Eq. (6.32) with the Kalman gain
given by Eq. (6.58) and using the predicted measurement Eq. (6.55) in the residual.
For the case of an augmented state vector the system and the observation noise
should be dropped from Eq. (6.54) and Eq. (6.57), since it was already included in
the estimates of Eq. (6.50) and Eq. (6.51).
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6.6. Experimental Results

The CBMMAE is applied to the identification and parameters estimation of a RGC

neuron model. The stochastic leaky integrate-and-fire (SLIF) model is employed to
evaluate the algorithm performance when applied to linear systems, and, afterwards
the SLIF model is complemented with a nonlinear block to obtain the firing rate to
test the algorithm performance in the estimation of a nonlinear system’s parameters.
In the context of physiological modeling this approach follows a modular viewpoint,
where the blocks of the model reflects the knowledge about the system under iden-
tification.

6.6.1. Linear System Identification

The SLIF model neuron model was presented in Sec. 3.3.4, and is used to illustrate the
application of the algorithm to a linear system. The neuron can be divided into three
main functional components, as described in Sec. 2.2. First, the neuronal dendrites
collect the inputs signals - in the form of spikes - from the presynaptic neurons and
transmit them to the soma. In the soma the collected signals are integrated, and
when a potential threshold is surpassed an action potential - a spike, is generated
and conducted through the axon to other neurons.

In the junction between two neurons the output axonal branch and the input den-
drite are brought very close forming a synapse. When the action potential reaches
the synapses of the axonal terminal of the presynaptic neuron it provokes the un-
leash of neurotransmitter molecules into the synaptic cleft that are collected by the
postsynaptic neuron, triggering the opening of ions channels in its membrane. As
detailed in Sec. 3.4.1 the ionic current induced in a neuron’s synapse in response to
the presynaptic action potencial can be modeled as an α-function:

Is(t) = α0t e−t/τα H(t). (6.61)

The α-function can be obtained as the solution of the differential equation1:

d2Is(t)

dt2
+

2

τα

dIs(t)

dt
+

1

τ 2
α

Is(t) = α0ρ(t), (6.62)

where α0 establishes the peak amplitude of the postsynaptic current pulse, and τα

is the pulse decay time constant. The input spike train signal ρ(t), defined by the
series of Dirac delta functions:

ρ(t) =
∑

i

δ(t− ti), (6.63)

models the barrage of incoming action potentials from different presynaptic neurons
that impinge the post-synaptic neuron at distinct time instants ti.

1Equation (6.62) can be obtained by calculating the Laplace transform of Eq. (6.61).
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The SLIF model, presented in Sec. 3.3.4, models the subthreshold potential of the
neuron membrane through the differential equation:

τm
dVm(t)

dt
= −Vm(t) + RmIs(t) + σmξm(t), (6.64)

where τm = RmCm is the membrane time constant, and σm gives the power of the
noise ξm(t). The noise ξm(t) in Eq. (6.64) is considered to be Gaussian white noise
with mean and covariance:

E{ξm(t)} = 0,

E{ξm(t)ξm(t′)} = δ(t− t′) .
(6.65)

The noise term, σmξm(t), in Eq. (6.64), models the influence of the synaptic current on
the membrane potential resulting from the stochastic spike arrival from background
activity in the neural network. The trajectory of the membrane’s voltage, given
by the solution of Eq. (6.64), for a single input current pulse with the shape of an
α-function, as given by Eq. (6.61), and not considering the influence of the noise
(σm = 0), is:

Vm(t) =
α0∆2

Cm

[
e−t/τm − e−t/τα

[
1 +

t

∆

]]
H(t), (6.66)

where 1/∆ = 1/τα − 1/τm.
Using the state-space formalism, the subthreshold dynamics of the neuron accord-

ing to the SLIF model, expressed by the first order differential equation of Eq. (6.64),
and considering the input synaptic current generated by the input spikes modeled
by the second order differential equation Eq. (6.62), can be written in the vectorial
form as the third order differential equation system:

dx(t)

dt
= Ax(t) + Bu(t) + Lξ(t), (6.67)

by considering the following convenient vector of state-space variables:

x(t) =



dIs(t)/dt + 1/ταIs(t)

Is(t)
Vm(t)


 , (6.68)

where the dynamic’s matrix of the system is:

A =



−1/τα 0 0

1 −1/τα 0
0 1/Cm −1/τm


 . (6.69)

The input vector is equal to the neural function:

u(t) =
[
ρ(t)

]
, (6.70)
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Parameter Value
Membrane capacitance Cm 250 pF
Membrane time constant τm 10 ms
Synapse current peak α0 0.38089 µA/s
Synapse current decay time τα 0.32564 ms

Table 6.2. Neuron model parameters

where the input matrix is just equal to:

B =




α0

0
0


 . (6.71)

The system noise vector, ξ(t) in Eq. (6.67), contains two different components to
model the spontaneous activity observed in neurons in the absence of a controlled
input stimulus. A component that mimics the random arrival of spikes at the neuron
synapses, ξs(t), that establishes an input background current noise. This component
is equivalent to the sum of a noise component in the second member of Eq. (6.62).
This noise term is also characterized by Gaussian white noise with mean and covari-
ance:

E{ξs(t)} = 0;

E{ξs(t)ξs(t
′)} = δ(t− t′) .

(6.72)

The noise vector also comprises the noise voltage component that models the mem-
brane’s potential oscillations due to the variations in the ionic currents through the
membrane, expressed by the noise term, ξm(t), in the second member of Eq. (6.64).
Therefore, the system noise vector is composed by:

ξ(t) =

[
ξs(t)
ξm(t)

]
. (6.73)

The noise vector is multiplied by the noise gain matrix:

L =



σs 0
0 0
0 σm


 , (6.74)

where σs and σm are the synaptic input current and membrane voltage noise gains.
The values for the parameters of the neuron model are taken to conform with the

literature [Gewaltig et al., 2001]. The membrane’s capacitance and time constant
are given in Table 6.2. The parameters of the differential equation for the α-function
in Eq. (6.62) were also chosen to obtain physiologically realistic values. The current
peak amplitude α0, and its time decay constant τα, were chosen so that the amplitude
of the voltage in Eq. (6.66) is 0.14 mV with a rise time of 1.7 ms which give the values
displayed on Table 6.2.
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Considering that the synaptic current is sampled at regular intervals of time like
the neuron membrane voltage, is as is commonly found in many experimental se-
tups [Picchini et al., 2008; Martins and Sousa, 2009], the discrete time measurement
equation:

z(t) = Cx(t) + θ(t), t = nTs, n ∈ Z, (6.75)

can be joined to the state-space equations, where Ts is the sampling period. The
observation matrix is:

C =

[
0 AI 0
0 0 AV

]
(6.76)

where AI and AV are the current, Is(t), and voltage, Vm(t), measurements’ amplifi-
cation. The noise vector θ(t) in Eq. (6.75) models the errors in the observations.

For the numerical simulation of the continuous-time neuron model Eq. (6.67)
must be converted into its discrete-time equivalent. A common procedure is to dis-
cretize the independent variable and apply the Euler approximation for the deriva-
tive [Rotter and Diesmann, 1999; Martins and Sousa, 2009]2. For a sampling period
equal to Ts Eq. (6.67) becomes:

x[nTs + Ts] = [I + TsA]x[nTs] + Bu[nTs] + ξ[nTs], n ∈ Z, (6.77)

with the discretization process the independent variable, t, is a multiple of the sam-
pling period, Ts, that takes only values on the sampling grid: 0, Ts, 2Ts, . . . , nTs. The
approximation in Eq. (6.77) is valid for the input signal, u[t], composed by a series
of Dirac delta functions positioned at the sampling grid, as expressed by Eq. (6.70),
so that the input matrix B is not affected by the discretization process. Dropping
the dependence of the independent variable on Ts, Eq. (6.77) can be written as:

x[t + 1] = Adx[t] + Bu[t] + ξ[t], t ∈ Z, (6.78)

where Ad = I + TsA.
The discrete system intensity noise matrix must be calculated so that the noise

power of the discrete system is independent of the sampling period [Gelb, 1974].
Thus, the covariance of the discrete white noise is given by:

Ξd = cov [ξ[kTs]; ξ[nTs]] = TsLΞLTδkn, (6.79)

where δkn is the Kronecker delta function.
The neuron’s currents and voltages are very small so that in order to avoid possible

numerical instabilities a similarity transformation should be used. A transformation
matrix is used so that the neuron current is measured in nanoampere and the mem-
brane voltage is measured in millivolt. The matrix for this similarity transform is:

T =



109 0 0
0 109 0
0 0 103


 . (6.80)

2The Euler approximation for the first derivative of the function f(t) with respect to time, between
the time instants t and t + Ts, is: df(t)/dt = [f(t + Ts)− f(t)] /Ts
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Figure 6.5. Probabilities evolution of a set of models (n = 5) with the CBMMAE.

Applying the similarity transform T , the matrix equation of Eq. (6.78) becomes:

x[t + 1] = TAdT−1x[t] + TBu[t] + Tξ[t], t ∈ Z, (6.81)

where now the current and the voltage variables of the state-vector of Eq. (6.68)
come in nanoampere and millivolt.

The CBMMAE algorithm was implemented and tested using the MATLAB envi-
ronment. The third order vector differential equation was discretized and different
configurations for the unknown parameters were used to test the algorithm. The true
model’s parameters are given in Table 6.2. It was used a discretization step equal
to Ts = 0.1 ms. The input spike train, ρ[t], was generated with a Poisson distribu-
tion with an expected number of 45 spikes/s. The system was simulated using the
noises variances: σ2

s = 10−18 A2 and σ2
m = 10−6 V2 in Eq. (6.79). The intensity of

observation noise is Θ = 10−4I2×2, and the current gain is AI = 1 and the voltage
amplification gain is AV = 1 in the measurement matrix of Eq. (6.76).

For n-unknown parameters the initial posterior probabilities used for each model
are:

Pk = 1/N, k = 1, . . . , N ; with N = 2n + 1. (6.82)

Whenever the algorithm signals that the posterior probability of one of the mod-
els has surpassed the threshold probability: Pi ≥ Pth, the models constellation is
shifted as described in Sec. 6.4.1, and the posterior probabilities are re-initialized
according to Eq. (6.82). It was used Pth = 0.98 for the threshold probability to
update the models constellation. When the models constellation is moved/shrinked
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the predicted and the updated stationary covariance matrices are computed by solv-
ing the respective Ricatti equation. The state estimate for each model is initialized
to x̂k[0|0] = 03×1, k = 1, . . . , N , where N = 2n + 1, and with the initial covari-
ance matrix Σk[0|0] = 10−3I3×3. Whenever the constellation is shifted, the state
estimate for each new model is initialized to the previous system state estimate:
x̂k[t|t] = x̂[t− 1|t− 1], k = 1, . . . , N , obtained by Eq. (6.14). Figure 6.5 displays the
time evolution of the posterior probabilities for 5 models used in the estimation of

n = 2 parameters: γ =
[
1/τα 1/τm

]T
.

The results displayed in Fig. 6.6 to Fig. 6.7 were obtained by averaging the results
for M = 25 Monte-Carlo runs of the experiment with a number of unknown parame-
ters n = 3, that implies a constellation of N = 9 models. The unknown parameters’
vector is:

γ =




1/τα

1/τm

Cm


 (6.83)

The parameters of the models used in the estimators bank were initialized, as de-
scribed in Sec. 6.4.1, by using the intervals:

γ1 ∈
[
600, 1200

]

γ2 ∈
[
400, 600

]

γ3 ∈
[
10−11, 10−10

]
.

(6.84)

The shrinking scale factor is equal to λ = 0.5 in the simulations. The errors of
the parameters’ estimates are displayed in Fig. 6.7, and were obtained with the
expression:

γ̃[t] =
1

M

M∑

i=1

(γ[t]− γ̂i[t]) . (6.85)

The plots of Fig. 6.6 and Fig. 6.7 show that the CBMMAE is effective in the
identification of the system and in the tuning of the 3 unknown parameters. From
Fig. 6.7 it can be seen that even starting with a set of parameters far from the true
system point, the estimation error goes to zero and is kept low along time for the
parameter scale.

Figure 6.8 displays a zoom of one parameter estimate with the associated esti-
mated error obtained with Eq. (6.19), corresponding to the standard deviation of the
parameter estimate, that is within the limits of the true parameter value.

Figure 6.9 shows the algorithm behavior in the identification and parameter tuning
of a time-variant system, and the associated error. From this figure it can be seen
that the CBMMAE follows the change of the parameter, with the estimation error
decaying rapidly. In this simulation the constellation topology is reset to its initial
form whenever the algorithm detects that the system parameters’ point is no longer
bracketed.
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Figure 6.6. Time evolution of the system parameters’ estimates for the linear system(
KF; UKF ).

6.6.2. Nonlinear System Identification

To evaluate the performance of the algorithm in the identification and parameter
estimation of nonlinear systems, the SLIF neuron model is extended. The neuron
model is composed by the linear block described in Sec. 6.6.1, that generates the
neuron subthreshold membrane potential from the set of evoked potentials (or spikes)
based on the SLIF neuron model, complemented by a nonlinear block to generate the
firing rate from the membrane potential. The parameters of the linear components
of the model are given in Table 6.2.

The discrete firing rate r[t] is obtained from the membrane potential Vm[t] given by
the linear model of Eq. (6.67), with the system matrices of Eq. (6.69) and Eq. (6.71),
by applying a sigmoid such that:

r[t] = S (Vm[t]) . (6.86)

The sigmoid has the form:

S (Vm[t]) =
r0

1 + e− Vm[t]−V0
τr

, (6.87)

where r0 establishes the maximum value for the firing rate, V0 shifts the sigmoid
along the horizontal axis, and τr establishes the slope of the sigmoid between its zero
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Figure 6.7. Estimation error for the 3 unknown linear system parameters ( KF;
UKF ).

minimum value and its maximum value r0. The discrete state-space nonlinear system
model can be written as:

x[t + 1] =

[[
Ad 03×1

]
x[t]

S (x3[t])

]
+ Bu[t] + ξ[t], (6.88)

where the state vector of Eq. (6.68) is augmented to include the firing rate:

x[t] =




dIs(t)/dt + 1/ταIs(t)
Is(t)
Vm(t)
r[t]


 . (6.89)

The linear and nonlinear blocks of the model are apparent from Eq. (6.88). The
parameters of the sigmoid are adjusted to the firing rate of the RGC data set refer-
enced in [Gerstner and Naud, 2009] by following the methodology described in the
adjustment of the nonlinearity in the model presented in Sec. 3.5.3. The noise matrix
of Eq. (6.73) is augmented to include the firing rate noise:

ξ(t) =




ξs(t)
ξm(t)
ξr(t)


 , (6.90)
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so that, besides the current and voltage, now the firing rate is also corrupted by
noise. The noise power matrix is now:

L =




σs 0 0
0 0 0
0 σm 0
0 0 σr


 . (6.91)

The values for the noise variances are: σ2
s = 10−18 A2, σ2

m = 10−6 V2 and σ2
r =

10−2 Hz2.
The input signal u[t] =

∑
δ[t − ti] is generated from a Poisson distribution with

a mean rate of 45 spikes/s. (The RGC data presented in [Gerstner and Naud, 2009]
has an average of 42 spikes/s). The observation matrix used is:

C =
[
0 0 0 1

]
, (6.92)

meaning that only the nonlinear firing rate is observed so that the other state vari-
ables are inferred through the nonlinearity. The observation noise has the intensity:
Θ = 10−4.

The constellation models’ probabilities were initialized with Pk = 1/N, k =
1, . . . , N with N = 2n + 1, with initial the mean estimate x̂k[0|0] = 04×1 and the
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Figure 6.9. Parameter estimation for a linear time-variant system and respective esti-
mation error for parameter γ1 = 1/τα.

initial covariance Σk[0|0] = 10−3I4×4. The threshold probability was set to Pth =
0.95. The shrinking scale factor is λ = 0.5. The results were obtained by averaging
M = 25 Monte-Carlo runs of the experiment. Figure 6.10 displays the evolution of
the estimates of two parameters of the linear block computed with Eq. (6.18) using a
constellation of N = 22 + 1 = 5 models. The estimation error displayed in Fig. 6.11
was computed with from Eq. (6.85). Figure 6.10 shows the results obtained in the
estimation of the two parameters vector:

γ =

[
1/τα

1/τm

]
, (6.93)

for the nonlinear system that results in a constellation of N = 5 models, by applying
the CBMMAE algorithm.

The results displayed in Fig. 6.10 and Fig. 6.11, where the EKF and the UKF are
used as the state-estimators in the MMAE, show that he algorithm is robust in the
estimation of the parameters even when they are initialized with values quite different
from their real values, and are observed through the nonlinearity.
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Figure 6.10. Estimates of the nonlinear system parameters ( EKF; UKF ).

6.7. Conclusions

This chapter proposes a new algorithm for system identification and simultaneously
for parameter estimation based on the MMAE, by applying a properly designed con-
stellation of models that are adapted according to the posterior probabilities of each
model, that is designated by CBMMAE.

The CBMMAE algorithm was first applied in the identification and parameters’
estimation of a linear neuron model. Afterwards, the linear neuron model was com-
plemented with a sigmoidal nonlinearity to produce the firing rate. In both situations
the CBMMAE was able to estimate the system parameters, even in the nonlinear case
where the system state variables used in the state estimators are inferred through
the nonlinearity.

The experimental results show the effectiveness of the constellation method in
the identification of the system and in the estimation of its parameters. Due to
its adaptive nature the CBMMAE is directly applicable to time-varying systems. In
the case of time-variant systems, the change of the parameters are detected and
the algorithm is able to estimate the new system’s parameters by reinitializing the
constellation to its starting configuration. The only restriction, that is also shared
by the standard MMAE method, is that the parameters should not change more
frequently than the convergence time of the algorithm. However, even if the system’s
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Figure 6.11. Estimates errors for the nonlinear system parameters ( EKF; UKF ).

parameters keep changing frequently the CBMMAE algorithm continues to search the
parameter space towards the true point, that is eventually determined when the
system stabilizes in a functioning point.

An additional advantage of the CBMMAE over the traditional application of the
MMAE algorithm is that the number of models depend on the number of parameters
than can change, and not on the number of possible configurations of the system,
and the number of models in the estimators bank is optimal in terms of the number
of parameters. Considering that only 1 parameter can change the algorithm needs
21+1 = 3 models, independently of the number of different values that this parameter
can take.

An additional advantage is that there is no need to know the exact values of the real
system parameters. If even if their range is not known, despite one usually have some
clues from the physical problem under analysis, the algorithm can be initialized with
an arbitrary interval for the system parameters. The only cost is that the tracking
process and possibly the shrinking process are done in more steps and take more
time.

The experiments reported used the same model for every element of the con-
stellation, however the bank of estimators can have different models with different
structures, or several bank of filters can be used in parallel with different structures.

In the constellation shrinking process the same scale factor is applied to every di-
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mension of the constellation, a further development of this algorithm is to analyze
the dependence of the system dynamic’s matrix on each parameter ir order to op-
timize the adaption of the parameters constellation according to this dependence.
An additional issue related with this algorithm concerns with the optimal constella-
tion volume. Starting the algorithm with a wider initial constellation topology, the
search in the parameter space is faster, while the sequel parameters tuning is slower.
Therefore, the obtention of the optimal values between the constellation dispersion
and the shrinking scales is another challenge.
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Every limit is a beginning as well as an ending.

George Eliot (1819-1880)

7
Conclusions

T
he advances of signal processing techniques and of electronics, in conjunction
with the development of biocompatible materials, opened the possibility to
design prosthesis capable to directly interface to the nervous systems, even at

the brain level. However, the challenges are enormous, there are several technological
issues to solve, namely those related with the biological interfaces, and with the
ethical problems connected to the clinical human testing of such devices. In the
meanwhile, these systems are continuously perfected by including the most recent
technological advances. This chapter presents the main conclusions of this thesis and
points some future work directions.

The thesis addresses several problems within the broad field of bioelectronic vision.
Although, the emphasis is on the engineering issues related to this subject, there was
a deliberate concern to fill the gaps between the biological and the electronics field.
There was a historical distance between these two fields, that has been narrowing in
the recent years due to the increasing interest from electrical engineers to apply the
advances achieved in electronics and in computers systems for biomedical applica-
tions. Therefore, several incursions are made along the thesis into different biological
topics considered relevant to understand the challenges at hand. However, there was
an effort to keep an engineering perspective. The biological background is introduced
in chapter two, and chapter three presents the most relevant neuron models, in gen-
eral, and retina models, in particular, that are used and analyzed in the subsequent
chapters.

A requirement in the development of bioelectronic vision is the modeling of the
signal processing occurring in the retina. The retina converts the incoming stimulus
in the form of a pattern of light into a series of spikes. The contribution to this
topic was the development of two new retina models. These models contribute to
the family of spiking neuron models and to the firing rate models. The first model,
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belonging to the spiking neuron models’ family, is termed dynamic retina model. The
model uses both the spike and the stimulus history to modulate the spike generation
current. It can have two different configurations: it can use only the static filtering
of the stimulus and of the spike history to model the spike generating current, or
use an additional dynamic filtering of the stimulus and spike history to modulate the
spike generation current. The comparison of the model performance with these two
alternative configurations discloses the importance of the use of dynamic blocks in
retina modeling, since the output error decreases significantly with the inclusion of
the dynamic blocks on the model.

The second model is based on the classic linear-nonlinear-Poisson (LNP) model.
However, this new model departs from the traditional structure by selecting and
including several excitatory and inhibitory kernels in the linear block. The kernels,
which are obtained from the analysis of the spike triggered covariance matrix, are
included by analyzing its influence on the NMSE and resulted in a significant decrease
of the output error compared to the traditional single use of the STA. This model
introduced the use of additive logistic regression in conjunction with the generalized
additive models in retina’s modeling. This approach has an additional advantage
because it provides a direct way to clearly identify the type of influence of each
kernel in the model: if it is excitatory or suppressive, and its relative contribution
to the retina model response, by analyzing the shape of the nonlinear functionals
obtained.

How the neuronal metrics can be used in the tuning and assessment of neuronal
models in general, and of retina models in particular is also part of the thesis. After
the organization of several neuronal metrics that are classified into three different
classes, specifically: firing rate metrics, spike train metrics and firing events metrics,
these are analyzed and its application to the tuning and assessment of a set of repre-
sentative retina models is discussed. The analysis of the results of the application of
the different metrics to sets of real spike trains permitted to propose a method to se-
lect the values for its parameters, so that they provide meaningful results both in the
context of model tuning and in terms of the evaluation of the model’s performance.
Specifically, the spike time metrics depend on a free parameter that establishes its
sensitivity to a particular characteristic of the encoding neural mechanism in terms
of the spike trains. If the value of this parameter is not chosen correctly the produced
results are misleading and the metrics are useless to evaluate neural responses.

Another relevant result is that, in general, the metrics do not refine each other, so
that to fully assess a neuron model different metrics should be used depending on the
relevant coding characteristics under evaluation. We show that there is even a metric
that is useless in the evaluation of neural response’s and in the models assessment.

The evaluation of the neural metrics to the assessment of the retina models also
unveiled the fact that there is not an optimal universal retina model irrespective of
the type of stimulus and the metric used to evaluate the results. The answer to the
question of what are the relevant neuronal encoding features used by the nervous sys-
tem does not reunite the consensus among researchers. While the knowledge about
the neuronal encoding mechanisms increases and the discovery of what are the de
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facto important features of the neural code relevant for carrying neuronal informa-
tion, the development of models that implement and mimic the coding mechanisms
and metrics that reflect and evaluate the codification features must be pursued. Cer-
tainly, the final conclusion can only be drawn by performing experiments with real
prosthesis in humans, where the plasticity of the nervous system will definitely play
an important role. Hence, the effort to develop robust retina models that reflect the
new discoveries about the neural coding mechanism must be continued.

Another area addressed in this thesis is the identification of systems. The con-
tribution to this area is the proposal of a novel algorithm for system identification
and parameter tuning, termed constellation based multiple-model adaptive estima-
tion (CBMMAE) algorithm. The CBMMAE algorithm relies on the classical multiple-
model adaptive estimation (MMAE) algorithm but uses a different structure for the
bank of filters and adds a models constellation adapter block. The CBMMAE algo-
rithm starts by the design of an adaptive constellation of models whose parameters
are refined by the constellation adapter until a model close to the real system is
identified, and/or its parameters estimated. The results show the effectiveness of the
constellation method to identify the parameters both for linear and nonlinear sys-
tems. The adaptability of the models’ constellation makes this algorithm appropriate
for the identification of time-varying systems. It is also shown that the number of
models in the constellation is optimal relatively to the number of unknown param-
eters when compared to the common use of the multiple-model adaptive estimators
algorithm. Also, due to the adaptive nature of the constellation, the algorithm deals
easily with high uncertainties in the parameters values. The regular structure of
the constellation makes the algorithm suitable to be further exploited to be used in
parallel computational systems to further reduce the computational time.

Besides the further development of retina models and metrics that should reflect
the new findings about the neural encoding of information there is also room for the
improvement of the new identification algorithm proposed. The CBMMAE algorithm
proved to be effective in the identification and estimation of linear and nonlinear
(neuron) models. However, it opened a vast field of applications and several im-
provements can be made and tested. For the identification of nonlinear systems,
there are several types of nonlinearities present in nature, and the performance of
the constellation can behave differently depending on the nonlinearity.

The research and test of alternative constellation topologies is another topic that
can be further developed. Presently the constellation has 2n + 1 points, for an n-
dimensional space (each one relative to a different model) which corresponds to a
hypercube with a center point. In a high dimensional unknown parameters’ space it
can be advantageous to reduce the number of models used in the estimators bank.
This can be achieved by using a simplex constellation, which has n + 1 points. How-
ever, in its present form the CBMMAE algorithm does not give a quantitative measure
of the distance between the models and the unknown system, only the nearest one.
To use a simplex constellation the history of the movement of the constellation by
the tracking and bracketing process along the parameter’s space must retained so
that the shift of the simplex can be adjusted according to its movement history and
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will need a careful research on details of the matter.
Another topic that should be further developed is the independent adjustment

of the scale shrinking factor for each system’s parameter to be identified. In the
CBMMAE algorithm proposed the scale shrinking factor applied to the constellation
is equal for every direction in the parameter space (type of parameter). However,
by analyzing the dependence of the system dynamic’s matrix on each unknown pa-
rameter it should be possible to derive a rule to obtain the scale shrinking factor for
each individual parameter to optimize the tracking/shrinking process. Moreover, the
formulation of the CBMMAE algorithm is quite general so that it is expected to see
its natural spread to other areas of application and to different types of systems.
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A
Blindness In The World

I
n the International Statistical Classification of Diseases, Injuries and Causes of
Death, produced by World Health Organization (WHO), low vision is defined as
visual acuity of less than 6/18 but equal to or better than 3/60, or a correspond-

ing visual field loss to less than 20◦, in the better eye with the best possible correction.
Blindness is defined as visual acuity of less than 3/60, or a corresponding visual field
loss to less than 10◦, in the better eye with the best possible correction. Visual im-
pairment includes both low vision and blindness [World Health Organization, 2010].

This appendix review the main causes of blindness and the associated diseases. At
the end the principal consortia labs involved in the development of visual prosthesis
are listed.

A.1. Extent and Main Causes of Visual Impairment

In 2002, it was estimated by the WHO that over than 161 million people were vi-
sually impaired, of whom, 124 million people had low vision and 37 million were
blind [World Health Organization, 2004]. However, refractive error as a cause of vi-
sion impairment is not included in these figures, which implies that the actual global
magnitude of vision impairment is bigger. The latest WHO estimates including re-
fractive errors add to the previous number and effectively double the estimated total
number of visually-impaired people worldwide, bringing it to some 314 million people
globally. The estimates also confirm that uncorrected refractive errors are a leading
cause of visual impairment worldwide [World Health Organization, 2006].

The impairments of profound blindness may have origin in degenerative retinal
diseases, or in brain injuries that affect the superior vision centers due to accidents
or to direct surgical intervention (e.g. for a tumor removal).
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Figure A.1. Global causes of blindness due to eye diseases, excluding refractive errors
(data from [World Health Organization, 2004]).

Cataract One of the major causes of vision impairments in the world is cataract.
Cataract is normally related with the ageing process and is characterized by the
opacity of the eye’s lens which impedes the regular flow of light. The actual treatment
for this disease consists of a surgical intervention to replace the eye opaque lens with
an artificial intraocular lens.

Glaucoma The second major cause of blindness is glaucoma. Glaucoma occurs
when the aqueous humor does not drain out correctly and the pressure within the
eye becomes too high, compromising the blood vessels of the optic nerve head and
eventually the axons of the ganglion cells, causing the death of these vital cells. The
reduction of intraocular pressure is imperative to avoid total blindness. This disease
affects the retinal nervous system and can cause permanent damages.

AMD The third cause of blindness worldwide is the AMD. In some persons the
macula, responsible for fine detail in the center of the visual area, degrades with
age due to unknown reasons. The pigment epithelium behind the retina degenerates
forming drusen and leaks fluid behind the foveal macular area. The cones in the
fovea die causing central vision loss and making impossible to read or see fine details.
The AMD is a major cause of blindness in the developed countries due to the number
of elderly people above 70 years of age.
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A.1. Extent and Main Causes of Visual Impairment

Corneal opacities The graphic in Fig. A.1 shows that the next cause of blindness
is corneal opacity, which occurs when the cornea becomes scarred, preventing light
from passing through the cornea to the retina, and causing, in some cases, the cornea
to appear white or clouded over. Corneal opacity can be caused by infection, like
conjunctivitis, or caused by the herpes virus, measles, injury, or inflammation of the
eye caused by a stroke or by a chemical agent. In many cases it can be reversed by
adequate treatment, that may include surgery.

Trachoma Trachoma, other cause of blindness, is an infection caused by an or-
ganism called Chlamydia trachomatis that can be treated with antibiotics. It is a
common cause of blindness worldwide but rare in developed countries.

Diabetic retinopathy A significant percentage of blindness is caused by diabetes,
which is a serious problem in the industrialized countries. Approximately 90% of
all diabetic patients have retinopathy after twenty years. Diabetic retinopathy is
characterized by anomalies in the blood vessels that get blocked, leak, or multiply in
an uncontrolled manner, leading to irreversible blindness.

Children blindness A major cause of blindness among children is the deficiency of
vitamin A, particularly in children under 5 years. Within this percentage is blind-
ness caused by premature born, infant retinopathy and cataract. Blindness among
children is a major problem due to their lifetime expectation. It is estimated that
1.4 million children below age 15 are blind.

Onchocerciasis Onchocerciasis is responsible for blindness particularly in the African
and Latin America countries. Onchocerciasis is a disease transmitted by a parasite
spread by flies in river side areas.

RP RP is a terrible disease presently with no cure. RP is an inherited disease that
causes degeneration of the retina and pigment excess. First it provokes night blind-
ness, then tunnel vision and, as more and more peripheral retina becomes damaged
and the rods die, progresses gradually to total blindness.

Figure A.1 displays the distribution of the principal causes of blindness in around
the world, and their prevalence based on the data collected from the World Health
Organization, authority for health within the United Nations Organization, in 2002
[World Health Organization, 2004]. The RP is included within others causes of blind-
ness grouped in the general class "others".

The blindness distribution is not geographically uniform. About 90% of visually
impaired people live in developing countries. Statistics says that females have a
higher risk of being visually impaired. In terms of age it is estimated that about
82% of visually impaired people have more than 50 years old. The "Vision 2020:
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The Right to Sight" is a global initiative for the elimination of avoidable blindness
[World Health Organization, 2007], launched jointly by the United Nations World
Health Organization (WHO), the International Agency for the Prevention of Blind-
ness (IAPB) and international eye care institutions and corporations. One of the
largest and most productive eye care facilities in the world is the Aravind Eye Care
System that was established in 1976 in Madurai, India. It has treated over 2.3 mil-
lion out patients and performed over 270 0000 surgeries, mainly people living in rural
India, and it was the recipient of the first edition of the António Champalimaud 1

Vision Award in 2007.

1The Champalimaud Foundation (http://www.fchampalimaud.org), based on Lisbon and created
in 2004 in the bequest of the late portuguese industrialist and entrepreneur António Champal-
imaud, supports individual researchers and research teams working at medical science, namely
in the field of neuroscience
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B
Characterization of the

Neural Response

T
his appendix presents several quantities and mathematical tools that allow a
description of the neural response. For an engineering audience, the liter-
ature on computational neuroscience in general, and for retina modeling in

particular, is full of somewhat unfamiliar terms, definitions, notions and concepts.
Despite the fact that, in the essence, many of the concepts are coincident (so that
their main differences reside primarily in the terminology), sometimes there are some
slight changes in the mathematical definitions. In other cases, however, completely
new concepts exist.

In the early days of experimental neuroscience, the neural response was measured
by counting the number of spikes occurring in a given time window applied at the
onset of the stimulus presentation. In the experimental setups in use today, the
retina is repeatedly stimulated with the same stimulus, and the acquired results are
averaged over the experimental trials.

We start by describing the main issues in the stimulation and recording of the
responses of the retina. A first look at the resulting spike sequences reveals that
the neurons’ responses are not equal for the same stimulus. Instead, the responses
show some variability from trial to trial, meaning that the neural behavior has a
certain level of randomness. This randomness implies that the neural code does not
possess a one-to-one correspondence, but instead the same stimulus triggers different
neural responses despite the fact that neurons have a certain degree of similarity.
To uncover the neural code, it is essential to quantify the degree of randomness in
the neural responses. Thus, we will present the main tools from probability and
stochastic process theory used to describe neural responses.

The remainder of the chapter is devoted to presenting the methods and quantities
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Figure B.1. Representation of a spike train.
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Figure B.2. Spike waveform of a rabbit’s retinal ganglion cell.

used to analyze and characterize the neural response of a nervous retinal cell, so that
we can quantify and thus reproduce its behavior. Although the methods and tools
presented in the subsequent sections could be applied to the analysis and charac-
terization of the responses of any neural cell, we will specifically target the neural
response of the retinal cells.

B.1. Spikes: The Essence of the Neural Code

Regardless of the input stimulus type – continuous or discrete – the neural output is
always a discrete sequence of voltage pulses, also called evoked potentials and briefly
termed spikes, that are positioned at time instants {ti}, with i = 1, · · · , n, in the
train, like the representation in Fig. B.1. The waveform of the evoked potentials has
a stereotyped shape for a given class of neural cells. Moreover, it is common practice
to classify the ganglion cells by the shape of their evoked potentials [Wandell, 1995].
Figure B.2 shows the spike waveform of a rabbit OFF-type RGC, sampled with a
frequency fs = 30 kHz, with the sampled points dotted.

Because of the stereotypical form of the spikes, despite the fact that their time
lengths, amplitudes, and shapes have slight variations, the information carried to the
brain must be encoded in the spikes’ temporal occurrence instants. With regard to
this fact, a spike train can be represented by a time series of equal amplitude bars,

210



B.1. Spikes: The Essence of the Neural Code

t [s]

S
p
ik

es

Figure B.3. Neuronal response function of a retinal ganglion cell.

with a bar located at every instant where a spike occurs. Figure B.3 shows a graphical
representation of a spike train segment from the response of a rabbit transient brisk
OFF-type ganglion cell when excited with a Gaussian random stimulus [Keat et al.,
2001].

A common, and not completely answered, question is: how does a spike train rep-
resent the sensory input, the internal states of the brain and the subsequent motor
control? The answer to this question can be viewed as the search for a translation
dictionary for this peculiar language [Meister and Berry II, 1999]. An interesting,
and funny, illustration used to introduce this problem is the concept of the homuncu-
lus [Rieke et al., 1997]. The homunculus is a metaphor in which a little man, placed
in the brain, receives the spike trains produced by the sensory organs in response to
stimuli, and tries to figure out what stimulus the organism is sensing. After decoding
the stimuli from the spike trains, the homunculus has to generate a spike sequence
to communicate with the organism’s members as a reaction to the environmental
changes. This metaphor encompasses the two processes involved in the neural code:
coding and decoding. The homunculus receives the sensory data encoded as a spike
train, decodes it in order to perceive the stimulus, and has to encode the response
again as a spike train to communicate its reaction.

In the development of a retina model, the main goal is to understand how stimuli
are encoded. This process is intimately related with the decoding process, because
when a stimulus is classified, by decoding the spike train it generates, the underlying
coding mechanism is revealed.

A current topic in the research community is the identification of the relevant
characteristics of the spike train that convey information [Eggermont, 1998]. Owing
to the variability of the neurons’ responses to the same stimulus, several researchers
claim that the only significant feature in the spike train is the firing rate, and not the
individual time instants of each spike occurrence. This viewpoint is usually called
the rate coding approach [Berry II and Meister, 1998].

On the other hand, several physiologists claim, based on some recent studies, that
by stimulating the retinal ganglion cells repeatedly, with the same visual stimulus, the
cells’ responses are quite regular with only a limited variability [Uzzell and Chichilnisky,
2004]. Thus, some recent retina models group the set of spikes from the neu-
ron’s responses into firing events, and assume that the time occurrence of the first
spike, the time interval between the first and second spike, and the total number
of spikes within each event are relevant to encode information [Berry et al., 1997;
de Ruyter van Steveninck and Bialek, 1988]. This perspective of the neural code is
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Figure B.4. Cellular recording of neuronal signals.

termed a time coding approach [Berry II and Meister, 1998]. Thus, in the time cod-
ing approach, the precise time relations between the spikes from the same neuron are
considered to be meaningful.

Another current debate relates to the information conveyed by a retinal ganglion
cell; whether it is independent of nearby cells, or if the information coded by the cell
population response is relevant. Some studies have shown that 90% of the information
is coded by the ganglion cell alone, and only 10% of the information is encoded in
the population response [Nirenberg et al., 2001].

B.1.1. Retina Stimulation and Responses Recording

The retina data have been obtained by sampling the responses of stimulated ani-
mals RGCs. The most commonly used retinas for data recording have provenance from
different animals, mainly vertebrates such as rabbits, salamanders, turtles, monkeys,
and even humans. Some invertebrates, like the blowfly, are also used [Keat et al.,
2001; Berry II et al., 1999; Chichilnisky, 2001; de Ruyter van Steveninck and Bialek,
1988].

The spike’s voltage course can be recorded extracellularly or intracellularly. Fig-
ure B.4 depicts the possible different locations of the recording electrode to mea-
sure neural activity. The signals recorded intracellularly are stronger and low-noise,
while the extracellular recordings are weaker and subject to noise from neighboring
cells [Dayan and Abbot, 2001]. Usually, an extracellular electrode collects electrical
signals originating on different neurons, which causes some difficulties in its analy-
sis, particularly for classifying the cells according to the waveforms associated with
spikes. Thus, if the recorded signals come from different neural cells of the same
type, it is impossible to perform their classification, and so it is assumed that the
spikes were produced by the same cell.

Currently, in the most common apparatus, the photoreceptor layer of the retina is
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B.1. Spikes: The Essence of the Neural Code

excited with visual light patterns, and the neural responses coming from the RGCs

are measured with an array of electrodes (see for example [Meister et al., 1994]).
Another, less common, alternative is to directly stimulate the retina with electrical
currents induced through the electrodes, like in [Grumeta et al., 2000].

The visual stimuli used to stimulate the retina RGC can have many variants and
the choice of stimulus is usually tied to the particular retinal response that we want to
characterize. In its most general form, a visual stimulus can have a spatial, temporal
and light wavelength dependency: s(x, y, t, λ), or s(r, t, λ) where r is the column
vector r = [x y]T . Usually, the analysis of the retina’s neuronal response is restricted
to a particular subset of this general ensemble. The visual stimuli can be divided
into two main categories in terms of their spatial and temporal variability. The
retina’s response is also commonly investigated for a particular wavelength, so that
the dependence of the stimulus on the light wavelength can be dropped and we can
focus only on the image luminance. The analysis of the chromaticity response of the
retina is made by varying the stimulus wavelength.

In terms of their time variation, the stimuli are usually classified as deterministic
or stochastic. In terms of the spatial behavior of stimuli, they can be organized as
full-field or uniform type, meaning that they are spatially constant and do not convey
any spatial information, or they can carry spatial information by changing spatially.
The deterministic stimuli can have a closed mathematical description, such as the
ON-OFF-type, or can be composed of simple patterns changing in time, such as a
moving bar drifting along the visual field with a given speed. The stochastic stimuli
can change both spatially and temporally in a random fashion.

The simplest subset, called the binary subset, comprises spatially uniform stimuli
with only two different intensity levels, like that illustrated in Fig. B.7a. If the time
duration of the presentation of each intensity level is constant, we have a periodic
waveform and the stimulus is called ON-OFF. Otherwise, if the time period for each
intensity level varies in a random way, it is called a flash stimulus.

Still, in the spatially uniform ensemble, a different stimulus intensity can be chosen
for each plate, which is called a random stimulus and is shown in Fig. B.7b. The light
intensity levels can be tabulated previously or can be obtained by randomly sampling
a probability distribution (like a Gaussian distribution, for example [Keat et al.,
2001]). This kind of stimulus is generally called white noise. A software library
with a wide variety of types of stimuli and functionalities available to drive and
control the images produced in a computer can be found at [Vision Egg, 2007].

In the ensemble of spatially non-uniform stimuli, there are many variants, ranging
from simple bars to films of natural scenes, depending on the retina response char-
acteristics one wants to unveil (see [Victor and Shapley, 1979; Demb et al., 1999]).
Figure B.12a represents simple horizontal and vertical bars that sweep the visual
field at a predetermined velocity. The bars can be viewed as a particular case of the
more general stimulus called sinusoidal grating displayed in Fig. B.8a. The sinusoidal
grating has the mathematical expression:

ssinu(x, y, t) = A cos (kx cos θ + ky sin θ) cos(ωt) , (B.1)
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(a) Flash stimulus (or ON-OFF).
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(b) Rabbit type-ON RGC spike trains.

Figure B.5. Rabbit ON-type RGC responses for a ON-OFF full-field stimulus (Ts =
1 ms).
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(a) White noise stimulus.
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(b) Salamander type-ON RGC spike trains.

Figure B.6. Salamander type-ON RGC responses for sampled white-noise full-field stim-
ulus (Ts = 1 ms).
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Figure B.7. Spatially uniform visual stimuli.

where the parameter k represents the spatial frequency, in radians per meter (rad·m−1),
so that λ = 2π/k is the wavelength of the grating. The parameter θ controls the
direction of stimulus movement. We can see Fig. B.8a as if we had taken a photo-
graph of the stimulus at a given time instant, but the stimulus amplitude in a given
position (x, y) changes sinusoidally from the maximum A cos (kx cos θ + ky sin θ), to
the minimum −A cos (kx cos(θ) + ky sin(θ)) according to the temporal frequency ω,
in radians per second (rad·s−1), so that T = 2π/ω is the period of the sinusoidal
modulation wave. Figure B.8b shows the time evolution of the stimulus amplitude
at a given point (x0, y0) where s0 = s(x0, y0, 0). To model moving bars from the
sinusoidal grating, we simply have to consider that whenever ssinu(x, y, t) is positive
it is equal to A, and when it is negative it is equal to −A. By introducing the signum
function, sgn(x), defined by:

sgn(x) =





−1 x < 0

0 x = 0

1 x > 0

. (B.2)

The moving bars can be expressed based on Eq. (B.1) like:

sbars(x, y, t) = A sgn (cos (kx cos θ + ky sin θ)) cos(ωt) . (B.3)

Another set of commonly used visual stimuli are based on the Gabor functions.
These kinds of stimuli are predominantly used in the characterization of the RF of
ganglion cells, and in some simple RGCs where the structure of their RF has a Gabor
function shape [Dayan and Abbot, 2001]. The expression for the Gabor function is:

sGabor(x, y, t) =
A

2πσxσx
e

−
(

x2

2σ2
x

+ y2

2σ2
y

)

cos (kx cos θ + ky sin θ) cos(ωt) , (B.4)

and it can be seen as a two-dimensional, independent Gaussian function, with the
span controlled by the parameter σx in the x-direction, and by σy in the y-direction,
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Figure B.8. Spatially non-uniform visual stimuli.

multiplied by a sinusoidal grating. Thus, the two-dimensional Gaussian function
is modulated in space by a sinusoidal function with vector number k (the spatial
wavelength), and is also modulated in time with a sinusoidal function with temporal
frequency ω. Figure B.9 shows an image of a horizontal and of a rotated Gabor
function. The dark and lighter bands spatially move from image to image in time.

The stochastic stimulus class comprises stimuli whose spatial and temporal infor-
mation are random. Figure B.10 shows two such kinds of stimuli. Figure B.10a shows
a frame of white dots chosen randomly against a dark background, while in Fig. B.10b
each dot has a variable amplitude obtained by randomly sampling a Gaussian distri-
bution. This type of stimulus is commonly referred to as a white noise stimulus, and
the analysis of the respective neural responses is recognized to have several interest-
ing features such as: exploration of a larger portion of the input space; insensitivity
to the strong adaptation of the retina to a particular deterministic stimuli; and a re-
ceptive field estimation that is more robust to the fluctuations in the responsiveness
of the neuron [Pillow and Simoncelli, 2003]. A whole set of analysis tools, partic-
ularly white noise analysis, are based in the study of the retinal responses to such
stimuli [Westwick and Kearney, 2003; Rieke et al., 1997; Rugh, 1981]

In the current experimental apparatus, a computer monitor, with the cathode ray
tube (CRT) or thin-film transistor (TFT) technology, is used to present the stimulus
that is guided through an optical system to stimulate the retina. Figure B.11 displays
a more complex stimulus, where each frame is divided into small squares that, in the
limit case, can be the image picture elements, whose RGB intensities are driven
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(a) Horizontal Gabor function. (b) Rotated Gabor function.

Figure B.9. Spatially nonuniform Gabor functions.

(a) Random dots. (b) White noise.

Figure B.10. Stimuli with spatial and temporal modulation.

by randomly sampling a Gaussian distribution. In order to display the stimulus
on a computer monitor, the stimulus must be discretized in time. The stimulus
in Fig. B.11 is discretized, where ti+1 = ti +∆t so that ∆t is the time bin width, that
establishes the sampling period of the stimuli, Ts. The images displayed by modern
computer monitors are digital, so each frame is composed of a set of small picture
elements, called picture element, which correspond to an inherent fine-grained spatial
sampling.

The retina has a response to the light stimulus intensity spanning several orders of
magnitude, from a single photon to an influx of several millions of photons per second.
The retina, similarly to other sensory organs, performs stimulus intensity compres-
sion, adapting to the mean level of the stimulus, and senses only deviations from the
stimulus mean following the Weber-Fechner law (see Sec. 3.2). In order to simplify
the study of the responses of retinal ganglion cells, the stimuli can be described only
in terms of their fluctuations around their mean level. For a continuous-time stimulus
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Figure B.11. Gaussian white noise stimulus sequence with spatial, temporal and chro-
matic variation.

this means that:

1

T

T∫

0

s(t)dt = 0 , (B.5)

where T is the stimulus time duration. For a discrete time stimulus used in signal
processing systems, the mean value of the stimulus is:

1

N

N∑

n=1

s[n] = 0 . (B.6)

We can obtain the stimulus property expressed in Eq. (B.6) by subtracting its average
value. Departing from a stimulus where Eq. (B.6) applies, a value can be added to
the stimulus value in order to establish the desired mean level for stimulating the
retina.

Next, we will provide an overview of the apparatus used at the University Miguel
Hernandez to gather retina data from several types of vertebrates, including humans.
This experimental apparatus is composed of three main parts: a stimulation system,
a retina holder and positioning device, and a data acquisition and recording system.
Figure B.14 displays the experimental apparatus for retina data acquisition used at
the University Miguel Hernandez.
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(a) Horizontal and vertical bars. (b) Checkerboard stimulus.

Figure B.12. Spatially non-uniform visual stimuli

Figure B.13. The Utah Microelectrode Array.

The most important component of the stimulation equipment is a computer with a
graphics card capable of driving two monitors: one used for the experimental stimulus
control and the other to present the stimuli. The stimulus displayed by the monitor
is reflected by a mirror and deflected by an optic prism in order to stimulate the
retina positioned in an appropriate holder.

The visual stimulation is generated using a 17" CRT high-resolution RGB moni-
tor attached to a computer running a specifically designed program, written in the
Python programming language using the VisionEgg libraries [Vision Egg, 2007]. The
images are focused with the help of a lens onto the photoreceptor layer. To set up
the whole system for data acquisition the retina is first flashed periodically with full
field white light, whereas a microelectrode array (MEA), like the Utah microelectrode
array (depicted in Fig. B.13), is lowered into the retina until a significant number
of electrodes detect light-evoked single and multi-unit responses. This allows the
recording from 60-70 microelectrodes on average out of a total of 100 microelec-
trodes during each experiment. The electrode array is connected to a 100-channel
amplifier (low and high corner frequencies of 250 and 7500 Hz) and to a digital sig-
nal processor-based data acquisition system. The neural spike events are detected
by comparing the instantaneous electrode signal to the thresholds set for each data
channel. When a supra-threshold event occurs, the signal window surrounding the
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Figure B.14. Experimental apparatus for retina data acquisition and analysis.

event is time-stamped (see Fig. B.2), and is stored for later offline analysis. All
the selected channels of data, as well as the state of the visual stimulus, are digi-
tized with a commercial multiplexed A/D board data acquisition system, from Bionic
Technologies, Inc, (now part of Cyberkinetics, Inc [Cyberkinetics, 2008]) and stored
digitally.

The preparation of the retina for the data acquisition process needs to follow a
delicate and sensitive process in order to obtain an effective and meaningful response
from its RGCs. Figure B.15 illustrates the whole process for the preparation of a
rabbit retina. First, the animal is sacrificed with an injection of an overdose of
anesthetic solution, followed by the enucleation of its eye. The eyeball is hemisected
with a razor blade and the cornea and lens are separated from its posterior half.
The retina is then carefully removed from the remaining eyecup with the pigment
epithelium, and is mounted on a glass slide, with the ganglion cell layer side up,
which is then covered with a millipore filter. This preparation is then mounted on
a recording chamber and superfused with bicarbonate-buffered Ames solution at a
temperature of 35◦ C, to postpone the retina death.

The recorded neuron cell responses are classified according to the spike waveform
shapes, by means of the classification software SAC [Shoham, 2001], which uses a
decomposition algorithm based on the Expectation-Maximization (EM) algorithm, in
which the distribution of waveforms from each unit is modeled as a multivariate t-
student distribution. As seen in Fig. B.17, the neuron responses to the same stimulus
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Figure B.15. Retina preparation for data acquisition.

are not unique; instead they a have a certain degree of randomness.

B.1.2. Spike Trains and Firing Rates

The spike train of Fig. B.3 is described mathematically by a series of Dirac delta
functions, δ(t), or unit impulse functions, using the signal processing terminology
[Oppenheim et al., 1999b], each one positioned at a spike time occurrence ti, where
i = 1, . . . , n, where n is the total number of spikes in the train:

ρ(t) =
n∑

i=1

δ(t− ti) , (B.7)

where ρ(t) is the termed neural response function. The neural response function
neglects the height and shape of the action potentials, so that all information is
contained in the time arrival of the spikes; thus, the spike train is considered to be a
point process [Brenner et al., 2002].

The Dirac delta function δ(t) has a set of important properties [Arfken and Weber,
2005]:

+∞∫

−∞
δ(t)dt = 1 , (B.8)

and

δ(t) = 0 for t 6= 0 . (B.9)

Another useful property of the delta function, which is a direct consequence of the
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Figure B.16. The δ∆ function.

previous ones and is known as the sifting property, is:

+∞∫

−∞
δ(t− t0)f(t)dt =

+∞∫

−∞
δ(t− t0)f(t0)dt = f(t0) . (B.10)

The Dirac delta function is not strictly a function since it does not have a closed
mathematical definition. To define the continuous Dirac delta function, we can use
the δ∆(t) function depicted in Fig. B.16 and defined as:

δ∆(t) =





1
∆T

−∆T
2

< t < ∆T
2

0 otherwise
. (B.11)

By taking the limit when ∆T → 0 we have:

δ(t) = lim
∆T →0

δ∆(t) . (B.12)

Given the definition in Eq. (B.12), we can see that the delta function has an area
equal to one, and, by making ∆T → 0, the nonzero function values become concen-
trated around the origin, having an infinitesimal duration and an infinite amplitude.
Although it has a peculiar definition, the enumerated properties make the delta func-
tion very useful.

The discrete-time counterpart of the delta function is the unit impulse. Unlike its
continuous form, the discrete unit impulse has a closed mathematical formula (see
[Oppenheim et al., 1999a]):

δ[n] =





0 n 6= 0

1 n = 0
, (B.13)
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where n in Eq. (B.13) represents the discrete independent variable, usually time1.
From Eq. (B.7), we can obtain the number of spikes, n, present in the recording

of a neuron response with a total time duration T and where each spike occurs at
instants ti, so that 0 ≤ ti ≤ T for all i by integrating the neuron response:

n =

T∫

0

ρ(τ)dτ

=
n∑

i=1

T∫

0

δ(τ − ti)dτ ,

(B.14)

where the integral in the last term evaluates to one due to the property in Eq. (B.8).
The neural response can be characterized by several quantities computed from the

neural response function. One such quantity is the spike-count rate. The spike-count
rate, r, is the number of spikes, n, appearing during a trial, divided by the total time
duration, T , of the trial, and has the expression:

r =
n

T
=

1

T

T∫

0

ρ(τ)dτ . (B.15)

The spike-count rate is the time average of the neural response over a particular
trial. The spike-count rate does not give any temporal information about the neural
response.

We can average the neural response function over many experimental trials ob-
tained with the same stimulus, such as the trials displayed in Fig. B.17. This average
is denoted by 〈ρ(t)〉, and is computed by summing all the individual neural response
functions for each trial and dividing the result by the number of trials M . If the
neural response function for the trial j, where j = 1, · · · , M , is represented by ρj(t),
the expression for the average neural response is:

〈ρ(t)〉 =
1

M

M∑

j=1

ρj(t) . (B.16)

If we represent the occurrence of a spike at time ti, with 0 ≤ ti ≤ T , in the trial j,
for j = 1, · · ·M , as tij then, with this nomenclature, the neural response average can
be written as:

〈ρ(t)〉 =
1

M

M∑

j=1

nj∑

i=1

δ(t− tij) , (B.17)

where nj represents the total number of spikes in the trial j, which is usually different
from trial to trial.

1Due to the fact that n is frequently used for the independent variable in discrete-time, this
convention is applied. However, n is also employed to denote the total number of spikes in a
train. The two meanings should be distinguished according to the context.
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Figure B.17. Neural spike trains from a Salamander ON-type retinal ganglion cell (Top)
when driven by the uniform white noise stimulus obtained from sampling a a Gaussian
distribution (Bottom), (data from [Keat et al., 2001]).

A time-dependent firing rate can be obtained by counting spikes over shorts in-
tervals of time, which is done more precisely with a large number of trials, which
results from repeatedly presenting the same stimulus to the neuron. The firing rate
at time t can be computed by counting the number of spikes that occur between
the time instants t and t + ∆t and dividing the result by ∆t; thus, the firing rate is
measured in spikes/s or Hz. The precision of the firing rate computation increases
by using a narrower time bin width ∆t; as a result, a higher temporal resolution can
be achieved. If we use only a spike train from a single trial and a narrow time bin,
the firing rate will be either zero or one, so an average over multiple trials should be
made. The time-dependent firing rate is defined as the average number of spikes over
several trials appearing in an interval between time instants t and t + ∆t, divided by
the interval length ∆t. The time-dependent firing rate is defined as:
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(a) ∆t = 10 ms
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(b) ∆t = 100 ms

Figure B.18. Retinal ganglion cell ON-type firing rate using different bin widths for the
neuron response division.

r(t) =
1

M

M∑

j=1

1

∆t

t+∆t∫

t

ρj(τ)dτ

=
1

∆t

t+∆t∫

t

〈ρ(τ)〉dτ ,

(B.18)

where the integral in the first equality computes the number of spikes between the
times t and t + ∆t in the jth trial, while the integral in the second equality captures
the number of spikes in the time range t to t + ∆t of the neural response average.

Formally, we can make the time interval length of Eq. (B.18) go to zero. Thus, by
taking limit we have

r(t) = lim
∆t→0

1

∆t

t+∆t∫

t

〈ρ(τ)〉dτ

=
〈

lim
∆t→0

1

∆t

t+∆t∫

t

ρ(τ)dτ
〉

,

(B.19)

where we can recognize the derivative of the integral of ρ(t) inside the angle brackets
in the last expression. Therefore, the formal definition of the firing rate can be
written as:

r(t) = 〈ρ(t)〉 , (B.20)

that states that the firing rate is the average of the neural function over many trials.

To calculate the firing rate from the observed data, a time interval with a finite
length must be used in order to obtain a reliable estimate of the average. Figure B.18
displays a parcel of the firing rate for the data in Fig. B.17. For a small ∆t, the
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quantity r(t)∆t is the average number of spikes present at the interval [t, t + ∆t]:

〈n〉[t,t+∆t] =

t+∆t∫

t

r(t)dt

∼= r(t)∆t .

(B.21)

By integrating r(t) over a given time interval, we obtain the average number of spikes
over that interval.

If ∆t is small in Eq. (B.18), there will be no more than one spike in the time
interval t ∈ [t, t + ∆t] for each neural response function, so that r(t)∆t gives the
fraction of trials in which a spike occurred between those times. In this way, r(t)∆t
can be interpreted as the probability of a spike occurring in the interval ∆t around
t. That is,

P (n = 1 in ∆t) = r(t)∆t . (B.22)

The spike-count firing rate can be averaged over several trials, yielding a another
quantity called the average firing rate and denoted by 〈r〉 with the expression

〈r〉 =
〈n〉
T

=
1

T

T∫

0

〈ρ(τ)〉dτ =
1

T

T∫

0

r(τ)dτ . (B.23)

The first equality in Eq. (B.23) indicates that 〈r〉 is the average number of spikes per
trial divided by the trial duration, where the second and third equalities result from
Eq. (B.14) and Eq. (B.20), respectively.

The three different quantities: r, r(t), and 〈r〉, are frequently used in the literature
without distinction as firing rate, which causes some misunderstanding; therefore,
special care should be taken to understand from the context which definition is being
employed.

The formal firing rate r(t) defined by Eq. (B.19) should, theoretically, be calculated
with an infinite set of trials. This is impossible, but the estimate becomes more
accurate as more and more trials are included in the set. Indeed, we have only a
finite set of experimental trials that must be discretized into time bins, and the firing
rate can be obtained by counting spikes within the time bins that compose a trial
and by averaging over trials.

In practice, the firing rate is estimated by dividing the spike trains into time bins
with a finite width ∆t, then the number of spikes within each time bin is counted,
and the result divided by ∆t. Furthermore, if we have several trials as the response
to the same stimulus, we can perform this operation for all trials and average the
results over these trials. This procedure generates a staircase-like spike-count firing
rate, which is a piecewise constant time function for each time bin, resembling a
histogram (see Fig. B.18). Each bar amplitude is equal to 1/∆t times the number of
spikes in each time bin. By decreasing the width of the time bins, ∆t, the temporal
resolution increases, and the firing rate can be estimated at a finer time scale, but
at the cost of reducing the number of possible different rates. In the limiting case,
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for a time bin narrower than the neuron’s refractory period, there can be only 0 or
1 spike in each bin, so that the height of each histogram bar can be only 0 or 1/∆t.

One way to avoid the quantization of the firing rate, which is always proportional
to the inverse of the time bin width, is to divide the trial into bins with a variable
width by fixing the number of spikes within each time bin, so that the firing rate is
approximated by the fixed number of spikes in the bin divided by the variable bin
width.

Both procedures described make the firing rate dependent on the size of the bin
and/or the spikes’ locations. To prevent these effects a time window, w(t), can be
used to smooth the firing rate. This window slides along the spike trains and counts
the number of spikes within the window at each new location. This is the same as
convolving the spike trains with the window. Generalizing, if we have M trials with
spikes positioned at times tij , with i = 1, · · · , nj, where nj is the number of spikes in
the trial j, and j = 1, · · · , M , the firing rate can be approximated by

rapprox(t) =

+∞∫

−∞
w(τ)〈ρ(t− τ)〉dτ

=
1

M

M∑

j=1

nj∑

i=1

w(t− tij) ,

(B.24)

for a window with unit area (otherwise the result must be divided by the window
area). This procedure corresponds to the convolution of the average neural response
with the filter kernel w(t). The last equality in Eq. (B.24) results from the Dirac
delta property in Eq. (B.10).

Convolution is one of the most important operations in signal processing and sys-
tem analysis since many systems can be completely specified by their convolving
properties. The convolution operator is denoted by an asterisk, and it represents the
integral in continuous time:

y(t) = x(t) ∗ h(t) =

+∞∫

−∞
x(τ)h(t− τ)dτ . (B.25)

The correspondent operation in discrete-time is defined as [Oppenheim et al., 1999b]:

y[n] = x[n] ∗ h[n] =
+∞∑

k=−∞
x[k]h[n− k] . (B.26)

Using this notation, the approximation for the firing rate in Eq. (B.24) can be written
as:

rapprox(t) = w(t) ∗ 〈ρ(t)〉 . (B.27)

One of the simpler filter kernels is the rectangular window, or boxcar filter. A
rectangular window with duration ∆T and unit area has the expression in continuous
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Figure B.19. The rectangular (boxcar) filter window.

time:

wrect(t) =





1
∆T

−∆T
2

< t < ∆T
2

0 otherwise
. (B.28)

Figure B.19 graphically represents a rectangular window. As a consequence of using a
window to convolve the spike trains, the values obtained for the firing rates separated
in time by less than one window width are correlated since they include common
spikes in their calculation.

The main problem with the rectangular window is that it is not a continuous
function. As a result, filtering the neural function average, which is also a series of
discontinuous delta functions, results in a irregular waveform for the firing rate. To
avoid these effects, a continuous window function that goes to zero as the distance
to the origin increases can be used. A widespread filter window is the ubiquitous
bell-shaped Gaussian function. The Gaussian function is defined as

wgauss(t) =
1√

2πσw

e
− t2

2σ2
w , (B.29)

where the parameter σw controls the width of the function and, consequently, the
temporal resolution of the rate. Figure B.20 displays the graph of the Gaussian
window.

Both the rectangular and Gaussian windows are not causal, meaning that they
approximate the firing rate at a given time instant by taking into account spikes that
were fired before and after that instant. To make the firing rate at time t dependent
only on spikes fired before t, we must use a causal filter for the window. A commonly
used causal filter is the α window (see [Dayan and Abbot, 2001]), which is expressed
as

wα(t) = α2t exp(−αt) H(t) , (B.30)
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Figure B.20. The Gaussian filter window.

where 1/α controls the temporal resolution of the firing rate estimate. The expression
of Eq. (B.30) introduces the continuous Heaviside function, H(t), or the unit step
function, in signal processing terminology [Ziemer et al., 1998], defined as:

H(t) =





0 t < 0

1 t ≥ 0
. (B.31)

The Dirac delta function, defined in Eq. (B.12) as the limit of a rectangular window,
can also be defined as the derivative of the Heaviside unit step function:

δ(t) =
d H(t)

dt
. (B.32)

The delta function properties, introduced in Eq. (B.8) and Eq. (B.9), still hold.
The delta function is called a generalized function that can be defined as the limit of
several alternative functions as long as its properties are satisfied [Ziemer et al., 1998;
Arfken and Weber, 2005]. The discrete-time counterpart of the continuous Heaviside
unit step function, Eq. (B.31), is the unit step sequence with the expression:

H[n] =





1 n ≥ 0

0 n < 0
, (B.33)

where n is the discrete independent variable. The unit step sequence is related with
the unit impulse, defined in Eq. (B.13), by

δ[n] = H[n]−H[n− 1] or H[n] =
n∑

k=−∞
δ[k] . (B.34)

In order to process the neuronal data in a computer, the data must be discretized.
In discrete-time, the spikes in the continuous neural function of Eq. (B.7) cannot be
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Figure B.21. The α function filter.

positioned at any arbitrary instant of time. In the process of discretization, if we use
a sampling period ∆t, the spikes are placed within a specific time bin, ni, with width
∆t. In discrete-time, the neuronal function of Eq. (B.7) is represented by a series of
discrete delta functions, or unit impulses, defined in Eq. (B.13), as:

ρ[n] =
n∑

i=1

δ[n− ni] , (B.35)

where ni are the discrete time instants corresponding to the time bins containing
a spike. The discrete neural function can be obtained by dividing the total time
duration of the response, T , into intervals of width ∆t, so that the sequence of the
neural function has a length equal to N = T/∆t. It is convenient to make ∆t small,
which means that the sampling frequency has to be sufficiently high in order to have
at most one spike in each time bin, which can be accomplished by choosing a time
sampling period smaller than the refractory period of the neuron. It was shown that
a sampling frequency within the range 10 kHz to 20 kHz is enough for the case of
primate retinal ganglion cells [Uzzell and Chichilnisky, 2004].

The firing rate, defined in Eq. (B.20) for the continuous case, becomes in discrete-
time

r[n] =
1

∆t

1

M

M∑

j=1

nj∑

i=1

δ[n− nij ] , (B.36)

where the limit nj in the sum represents the number of spikes in the trial j and the
limit M is the total number of trials in the experiment. The resulting sequence r[n]
gives the number of fired spikes per second (Hz) in the time bin n, with 0 ≤ n ≤ N−1.
The discrete firing rate r[n] is frequently plotted against time, giving the PSTH, as
depicted in Fig. B.22.
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Figure B.22. Firing rate obtained by filtering the neural response with different types
of filter windows: (a) rectangular window with ∆t = 100 ms; (b) Gaussian window with
∆t = 100 ms; (c) α-window with 1/α = 100 ms. The sampling rate is Fs = 1 kHz.

The average firing rate is obtained from the discrete firing rate by the expression:

〈r〉 =
1

N

N∑

n=1

r[n] , (B.37)

where N is the number of time bins into which the spike train was sampled. The
average number of spikes 〈n〉 within the time bin n, corresponding to the time interval
[n∆t, (n + 1)∆t], is given by

〈n〉[n∆t,(n+1)∆t] = r[n]∆t . (B.38)

For a small ∆t, so that there is at most one single spike per time bin, the firing rate
corresponds to the probability that the neuron will fire a spike within that time bin.

B.1.3. Spike Triggered Average

A useful and enlightening characteristic of a neuron is the waveform of the stimuli that
produces a given response. We can choose different patterns of spikes and compute
the stimuli that originate it. There are several possibilities, ranging from the stimulus
that elicits a single spike to the stimulus that produces a more complicated sequence
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Figure B.23. Procedure for the STA computation.

of spikes [de Ruyter van Steveninck and Bialek, 1988]. However, the most simple
and common situation is to analyze the stimuli that elicited a single spike.

With the single spike response, we try to figure out what the stimulus looks like,
on average, before this single action potential was fired. The resulting quantity is
termed the spike triggered average (STA). The STA provides a very useful tech-
nique to characterize the neural selectivity, and it constitutes the basic framework
for several retina models [Chichilnisky, 2001; de Ruyter van Steveninck and Bialek,
1988]. The STA is also referred to in the literature as the reverse correlation func-
tion Simoncelli et al. [2004], the mean effective stimulus, the triggered correlation
function, or even the first Wiener kernel [Rieke et al., 1997].

The procedure to compute the STA is: i) pick the stimulus segments before every
fired spike in a trial, ii) add all these segments, iii) normalize the resulting waveform
by the total number of spikes, and then iv) repeat the previous procedure for all trials
available and normalize the result by the number of trials. Figure B.23 illustrates
the computing process of the STA for a single spike train #j with nj spikes.

If we represent the stimulus segment with length τmax, which occurs just before a
spike located at the time instant ti in trial j by s(tij − τ), with 0 < τ ≤ τmax for
i = 1, · · · , nj, where nj is the number of spikes in trial j, and j = 1, · · · , M , where
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(a) ON-type RGC
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(b) OFF-type RGC

Figure B.24. Time reversed spike triggered average (STA) of a ON-type retinal ganglion
cell (salamander), and of an OFF-type cell (rabbit), (data from [Keat et al., 2001]).

M is the number of trials evolved in the computation, the STA takes the value

sspk(τ) =
1

M

M∑

j=1

1

nj

nj∑

i=1

s(tij − τ) 0 ≤ τ ≤ τmax . (B.39)

This expression is equivalent to a weighted sum over several trials.

Although it was not imposed a limit for the value of τmax in Eq. (B.39), the
neural response depends on the stimulus only within a time window with a few
hundred milliseconds wide before the spike occurrence, which corresponds to the
neuron memory. This happens because sspk(τ) goes to zero for positive values of τ
larger than the correlation time between the stimulus and the response. If, however,
the stimulus is not temporally autocorrelated, we can state that sspk(τ) will be 0 for
τ < 0 because the neuron response should not be dependent on future stimuli – it is
a causal system.

To compute the STA, the stimuli segment is acquired over a finite time period
before every spike occurrence; these different stimuli are summed, and the result
is normalized by the number of spikes considered. Figure B.24 shows the plot of
the STA, time reversed, for two distinct types of RGC cells. These cells are categorized
according to the waveform of their STA. As we can see from Fig. B.24a, the RGC

of the salamander fires preferably in response to the positive onset of stimulus, so it
is classified as an ON-type cell. The rabbit RGC in Fig. B.24b fires predominantly
when the stimulus has a negative offset, so it is classified as an OFF-type cell.

Taking into account the property expressed in Eq. (B.10) we can write

s(ti − τ) =

T∫

0

δ(t− ti)s(t− τ)dt , (B.40)
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so that Eq. (B.39) becomes:

sspk(τ) =
1

M

M∑

j=1

1

nj

nj∑

i=1

T∫

0

δ(t− tij)s(t− τ)dt

=
1

M

M∑

j=1

T∫

0

1

nj

nj∑

i=1

δ(t− tij)s(t− τ)dt

. (B.41)

By assuming that each spike train has a similar number of spikes, we can approx-
imate the number of spikes in each trial by nj ≃ 〈n〉; for example, this is a good
approximation when the number of spikes in each trial is high. With this assumption,
Eq. (B.41) can be written as:

sspk(τ) =
1

〈n〉

〈 T∫

0

n∑

i=1

δ(t− ti)s(t− τ)dt

〉

=
1

〈n〉

〈 T∫

0

ρ(t)s(t− τ)dτ

〉 . (B.42)

The last equation above relates the STA with the neural response function defined by
Eq. (B.7). Furthermore, if the same stimulus is used for all trials, Eq. (B.42) can be
further simplified to:

sspk(τ) =
1

〈n〉

T∫

0

〈ρ(t)〉s(t− τ)dt =
1

〈n〉

T∫

0

r(t)s(t− τ)dt . (B.43)

By definition, the correlation function of the firing rate with the stimulus is:

Crs(τ) =
1

T

T∫

0

r(t)s(t + τ)dt . (B.44)

Equation (B.43) relates the STA with the correlation function of the stimulus with the
firing rate. Comparing the previous equation with Eq. (B.43), we have the relation

sspk(τ) =
1

〈r〉Crs(−τ) , (B.45)

where 〈r〉 = 〈n〉/T is the average firing rate over the set of trials. From Eq. (B.45), we
can see that sspk(τ) is proportional to the correlation function of the firing rate with
the stimulus at preceding times, so that the STA is also called the reverse correlation
function.

Whenever the input stimulus has a shape similar to the STA, the neuron has a
high probability of firing a spike. This is the genesis of several neuron models, and
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of retina models in particular. Considering that the firing rate of a visual neuron is
a functional of a filtered version of the input stimulus s(t),

r(t) = r0 F




∞∫

−∞
h(τ)s(t− τ)dτ


 , (B.46)

where h(t) is the filter’s impulse response and F [·] is a nonlinear memoryless func-
tional. It has been shown that the STA is proportional to the filter h(t) [Rieke et al.,
1997; Chichilnisky, 2001]. This result is very useful since it allows to separate the
calculus of the linear filtering properties of the neuron response from the nonlinear-
ities in the spike generation [Keat et al., 2001]. The STA can also be interpreted as
the neuron receptive field since it represents the preferred stimulus of the ganglion
cell in terms of time profile [Rust et al., 2004].

We must be aware that, in the expression for the STA of Eq. (B.39), the stimu-
lus segments gathered from different trials are weighted differently according to the
number of spikes contained in the trial – the stimulus segments belonging to a train
with fewer spikes have a greater weight in the overall sum. However, the important
relations between Eq. (B.39) and other quantities, such as the neural function in
Eq. (B.42), the firing rate in Eq. (B.43), and the correlation function in Eq. (B.45),
are valid only if the approximation nj ≃ 〈n〉 is fulfilled.

We can simplify the calculation of the STA for discrete-time. If the sequence s[n]
represents the discrete input stimulus of a RGC, whose response is the binary sequence
ρ[n], which is composed by a sequence of unit impulse functions, then we can calculate
the STA using the expression

sspk[l] =

M∑
j=1

N∑
n=1

ρj [n]s[n− l]

M∑
j=1

N∑
n=1

ρj [n]
, 0 ≤ l ≤ lmax , (B.47)

where N is the length of the stimulus sequence and ρj[n] is the neural response of the
trial j of a total of M responses obtained in the experiment by applying the same
stimulus. In Eq. (B.47), all stimulus segments before every spike in every available
trial are summed, and the result is divided by the total number of spikes occurring
in all trials. In matrix notation, the STA can be represented by the vector:

sspk =
[
sspk[0] sspk[1] · · · sspk[lmax]

]T
, (B.48)

with dimension lmax corresponding to the neuron memory.
The STA is particularly meaningful if the stimulus is composed of a white noise

sequence, meaning that it is uncorrelated. For a stimulus sequence that is not au-
tocorrelated, the resulting STA sequence goes to zero for a time lag larger than the
neuron memory. The time lag, lmax, is the discrete dual of τmax in Eq. (B.39) for the
continuous, and they are related by lmax = τmax/∆t, where ∆t is the sampling period
used in the discretization of the stimulus and of the neural response. Depending
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on the species, a time lag between 40 ms and 950 ms is used [Keat et al., 2001] to
calculate the STA of the retinal ganglion cells.

Although we have considered only time in showing how to calculate the STA, we
can also include space. To calculate the spatial spike-triggered average, we must
average the sequence of images (and not only a single luminance value for each
time instant) that generated a fire for every spike occurrence. This is the procedure
to obtain, for example, the spatial and temporal form of the receptive field of a
neuron [Chichilnisky, 2001].

B.1.4. Spike Train Autocorrelation Function

The spike train autocorrelation function gives the time relation between any two
spikes in a given spike train. It gives the distribution of times between any two
spikes in a train.

The spike train autocorrelation function is the autocorrelation of the quantity
obtained by subtracting from the neural function, defined in Eq. (B.7), the mean
firing rate 〈r〉 averaged over time and over trials:

Cρρ(τ) =
1

T

T∫

0

〈(ρ(t)− 〈r〉)(ρ(t + τ)− 〈r〉)〉dt . (B.49)

In fact, the expression in Eq. (B.49) follows the autocovariance definition since
the mean firing rate is subtracted from the neural function before the autocorrela-
tion computation [Therrien, 1992]. Nonetheless, it is called autocorrelation in the
neuroscience literature [Dayan and Abbot, 2001].

We can define, analogously to the spike train autocorrelation, a cross-correlation
between spike trains generated by different neurons. The cross-correlation function
between a pair of spike trains is useful when we are looking for synchronicity in the
firing from different neurons. For example, if the cross-correlation between two spike
trains from different neurons have a peak at zero lag means that the neurons are
firing synchronously, while a shift of the peak from zero indicates that the neurons
are firing synchronously with a phase shift. The autocorrelation function is an even
function of the lag τ so that Cρρ(τ) = Cρρ(−τ), while the cross-correlation function
is not an even function of the lag, which means that Cρ1ρ2(τ) 6= Cρ1ρ2(−τ).

In practice, the spike train autocorrelation is computed by: i) sampling the con-
tinuous neural function into time bins of width ∆t; ii) the number of spikes in each
time bin is recorded into a sequence; iii) the spike count sequence, corresponding
to the mean, is subtracted from this sequence; finally, iv) the autocorrelation of the
sequence is computed. The resulting autocorrelation can be plotted in the form of a
histogram as a function of the lag between the time bins.

In discrete-time, the spike train autocorrelation function is calculated by the au-
tocorrelation of the neural response with the average firing rate removed, as shown
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by the expression:

Cρρ[l] =
1

N

1

M

M∑

j=1

N∑

n=1

(ρj[n]− 〈r〉)(ρj[n + l]− 〈r〉) , (B.50)

where l represents the lag between two spikes measured in number of time bins. As
before, N is the total number of time bins, corresponding to the neural response
length, and M is the number of trials included in the calculation.

B.1.5. The Spike Triggered Covariance

The spike-triggered covariance is another important quantity that characterizes the
neural response. Its application is gaining increasing relevance in recent studies
that examine the modeling of neuronal responses, particularly of the retinal re-
sponse [Schwartz et al., 2002; Simoncelli et al., 2004]. The STC is used to obtain
parameters from the firing rate second order statistics, and it can also be used to
recover a series of linear filters that resemble the neural response in the presence of
both symmetric and asymmetric nonlinearities [Rust et al., 2004].

Qualitatively, the STC function tells us how the stimulus varies with itself before
a spike is fired. It is obtained by computing the covariance between the stimulus
segments before every spike. If the occurrence of spike i in the trial j is represented
by tij , where 1 ≤ i ≤ nj and 1 ≤ j ≤M , the STC is defined in continuous time by

Css(τ1, τ2) =
1

M∑
j=1

T∫
0

ρj(t)

×
M∑

j=1

nj∑

i=1

[(s(tij − τ1)− sspk(τ1)).(s(tij − τ2)− sspk(τ2))]

=
1

M∑
j=1

nj

M∑

j=1

nj∑

i=1

s(tij − τ1).s(tij − τ2)− sspk(τ1)sspk(τ2) ,

(B.51)

where sspk(τ) is the spike triggered average and the denominator corresponds to the
total number of spikes from all trials. The STC is a bi-dimensional function that
returns the stimulus variation at time τ1, before the spike is fired, as a function of its
value at time τ2, before the spike is fired. In discrete-time, the expression for the STC

is

Css[l1, l2] =
1

M∑
j=1

nj

M∑

j=1

nj∑

i=1

[s[nij − l1]− sspk[l1]).(s[nij − l2]− sspk[l2])] , (B.52)

where nij is the bin of the trial j where the spike i occurs and sspk[l] is the discrete
spike-triggered average.
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If the stimulus vector before spike i in trial j is represented by sij ,

sij =




s[nij]
s[nij − 1]

...
s[nij − lmax]




, (B.53)

the STC matrix can be written as:

Cspk =
1

M∑
j=1

nj

M∑

j=1

nj∑

i=1

(sij − sspk)(sij − sspk)T , (B.54)

where sspk is the STA vector.

B.2. Stimulus and Response Statistics, and Firing

Probabilities

As stated before, to estimate a probability with some reliability, we need a large
number of data vectors. Or, if we are interested only in some common statistical
parameters, such as the mean and variance, we need a very long experiment in time
for the case of an ergodic process. The former case is more common in experimental
neuroscience: the same stimulus is repeatedly presented to the neuron, and the
respective responses are recorded. For the case of the retina neural circuit, the
responses to the same stimulus show some variability that justifies, and even enforces,
the application of probability tools to characterize and describe the neural code.

In a common experimental setup, the retina is excited with a visual stimulus,
s(t), chosen by the experimenter. As a consequence, a sequence of spikes, occur-
ring at times t1, t2, · · · , tn, which correspond to a particular neural response, ρj(t),
is recorded. Then, the probability that the neuron will fire conditioned to that par-
ticular stimulus, P (ρj(t)|s(t)), can be estimated from the collected responses.

The stimulus itself can be drawn from a given probability distribution P [s(t)],
such as a Gaussian distribution, for example, defining an ensemble of stimuli signals.
The stimulus distribution may even resemble the statistical properties of natural
scenes [Yu and de Sa, 2004].

Since the stimulus is random and the neuron response has also a random nature,
the neuron activity can be described by the joint probability distribution of the
stimuli signals and the spike trains: P (ρj(t), s(t)). This joint distribution quantifies
the likelihood that, in the course of the experiment, the stimulus s(t) and the spike
train ρj(t) will both be observed. By employing the relationship between the joint,
the marginal, and the conditional probability distributions, the joint distribution can
be written using the response distribution conditioned to a given stimulus as

P (ρj(t), s(t)) = P (ρj(t)|s(t)) P (s(t)) , (B.55)
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where P (s(t)) is the stimulus marginal probability distribution. We can also try to
find which spike train a given stimulus will trigger. As mentioned before, there is
not a one-to-one relationship between a given stimulus and the generated spike train,
but we can write the following joint probability distribution:

P (s(t), ρj(t)) = P (s(t)|ρj(t)) P (ρj(t)) . (B.56)

By equating the probability distributions of Eq. (B.55) and Eq. (B.56), we have

P (ρj(t)|s(t)) P (s(t)) = P (s(t)|ρj(t)) P (ρj(t)) . (B.57)

From Eq. (B.57), we can follow two different perspectives about the neural code.
From a modeling, or encoding, perspective we would like to know the distribution
P (ρj(t)|s(t)) so that, given a certain stimulus, the most likely neural response can
be obtained. We can then generate the spike train to stimulate the superior parts of
the nervous system. The desired distribution has the expression

P (ρj(t)|s(t)) =
P (s(t)|ρj(t)) P (ρj(t))

P (s(t))
. (B.58)

This last equality expresses Bayes’ rule that relates marginal and conditional proba-
bilities.

By taking the brain decoding perspective, which perceives the stimulus from the
received spike train, the distribution of interest is:

P (s(t)|ρj(t)) =
P (ρj(t)|s(t)) P (s(t))

P (ρj(t))
. (B.59)

Next, we will present the most common probability distributions employed in the
analysis of the neural response.

B.2.1. Spike Train Statistics

The structure of a spike train can be perfectly regular, as in the trains generated
by neurons controlling the heart beat where spikes are fired regularly at almost
constant time intervals. On the opposite extreme, they can show a completely random
behavior, where spikes are fired independently of past history, as is observed in the
brain.

The retinal ganglion cells fire spontaneously, even in the dark, such that those spike
trains obviously do not convey any visual information and should be considered as
pure noise. However, when properly stimulated, retinal ganglion cells can produce
very reproducible spike trains from trial to trial [Berry et al., 1997], which means
that the spike train variability is controlled.

The stochastic process that generates a sequence of stereotyped discrete events,
such as spikes, is called a point process. The probability P (t1, t2, . . . , tn) that a
sequence of n spikes occurring at the time instants {t1, t2, . . . , tn} is proportional
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to the probability density of the spike occurrences at those times: p(t1, t2, . . . , tn).
Specifically, the probability of occurrence of a sequence of n spikes, with spike i
occurring between time instants ti and ti + ∆T , with i = 1, 2, . . . , n, is given by:

P (t1, t2, . . . , tn) = p(t1, t2, . . . , tn) · (∆T )n . (B.60)

However, the possible number of different spike sequences is so huge that we
would need an infinite amount of data to fully characterize the probability density
p(t1, t2, . . . , tn). The impossibility of reliably characterizing the probability density
in Eq. (B.60) to a desirable degree led to the development of statistical models that
simplify the description of a spike train.

In general, the generation of a spike can depend on the full history of the process.
That is, the generation of a spike at time tn can depend on all the spikes generated
previously, so that the probability of a neuron firing a spike at the time instant tn is
dependent on all the previously generated spikes. This is described mathematically
as the conditional probability

P (tn|t1, t2, . . . , tn−1) . (B.61)

By observing the firing dynamics of a neuron, it was noticed that, for most cases,
the firing of a spike depends mainly on the last generated spike. If the probability of
spike generation depends only on the last generated spike, the conditional probability
of Eq. (B.61) can be simplified to

P (tn|t1, t2, . . . , tn−1) = P (tn|tn−1) , (B.62)

and the point process is deemed a renewal process.
The opposite case of Eq. (B.61) is when the generation of a spike is considered to

be independent of the history of the whole process, so that the firing of a spike is
statistically independent of the previous spikes occurrences, such that

P (tn|t1, t2, . . . , tn−1) = P (tn) . (B.63)

This stochastic process is called a Poisson process. Poisson processes play an impor-
tant role in the description of spike trains statistics, providing a useful approximation
of the stochastic neuronal firing.

As we have seen in Sec. B.1.2, the firing rate r(t), defined formally by Eq. (B.20),
is proportional to the probability of the neuron to fire a single spike around the time
t, and, if it is considered that the occurrence of one given spike is independent of the
occurrence of other spikes, it can be used to compute the probabilities for all possible
action potentials. Specifically, the probability of a neuron firing a spike between the
time instants t and t + ∆t is:

P (spike in [t, t + ∆t]) = r(t)∆t. (B.64)

Poisson processes can be classified into two main categories: homogeneous Poisson
processes, where the firing rate is constant along the spikes’ generation, r(t) = r, and
inhomogeneous Poisson process, where the firing rate is time dependent, r(t).
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The inhomogeneous Poisson processes can be further adapted in several different
ways to better model the spike train statistics, namely, the inclusion of a model of
the absolute refractory period, where the probability of firing is null, and the relative
refractory period, where the probability of firing is initially low but increases con-
tinually [Berry II and Meister, 1998]. The existence of the refractory period means
that the spike events are not independent and that the firing rate by itself is unable
to fully describe a spike train correctly.

The majority of neuron models, and retina models in particular, are rate models.
This means that their goal is to deliver at the output an estimate of the cell firing
rate, but what they convey to the brain is a train of spikes. So, the characterization
of the spike train in statistical terms is very important in order to have a model to
generate spike trains while departing from an estimation of the firing rate.

B.2.2. Homogeneous Poisson Model of Spike Trains

As stated before, a spike train is described by the neural response function, ρ(t), with
spikes placed at time instants t1, t2, . . . , tn.

First, we divide the spike train with a total time duration T into time bins suffi-
ciently small so that there is at most one spike in each bin. If the width of each of
these time bins is ∆t, then there are N = T/∆t time bins. Note that the probability
of having a spike in a time bin is equal to r∆t. If we observe a particular spike train
with n spikes in the N bins (n ≤ N), the probability of the occurrence of this very
particular sequence is equal to the probability of having n bins with spikes, which
is (r∆t)n for a constant firing rate, times the probability of having the other N − n
time bins without any spike, which is (1 − r∆t)N−n. By the previous reasoning, a
particular spike sequence has the probability

P (10110 · · ·001︸ ︷︷ ︸
n spikes

) = (r∆t)n(1− r∆t)N−n . (B.65)

The argument of P (·) in Eq. (B.65) represents a particular spike train in which we
are interested, where a spike is represented by a 1, while an empty bin is represented
by 0.

Spike Count Distribution

Considering first a description of the spike train that disregards the precise time
occurrences of each spike, where we are concerned only with the probability of having
exactly n spikes within the trial of duration T . We denote this probability by PT (n),
called the spike count distribution. If we are not interested in a specific spike train,
but instead with the probability of having n spikes within a spike train, independent
of the particular time bins in which they appear, then we can have N !/ (n!(N − n)!)
different spike trains with exactly n spikes distributed among the N bins. Therefore,
the probability of getting n spikes in a time period equal to T , for a constant firing
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rate r, is given by Eq. (B.65) multiplied by the combinatorial factor

PT (n) =
N !

n!(N − n)!
(r∆t)n(1− r∆t)N−n . (B.66)

Equation (B.66) is a discrete probability function, or probability mass function
(pmf), corresponding to a binomial distribution. The binomial distribution reduces
to the Bernoulli distribution for the particular case of n = 1 [Mood et al., 1974;
Papoulis and Pillai, 2002], which corresponds to the probability of the occurrence of
a single spike during the time period T . Figure B.25 shows a plot of the probabilities
for the number of spikes using the same firing rate r = 0.3 spikes/s for different
values of the trial duration T . We can note that, as the value of T increases, the
probability of having a larger number of spikes also increases.

In Eq. (B.66), each spike is placed in a given time bin, within the N bins available,
which corresponds to a time precision of ∆t. However, in continuous terms, the
spikes can be placed at any time instant so that we can calculate the limit when the
width of the time bins goes to zero. Since N = T/∆t as ∆t→ 0, the number of time
bins, N , will grow, but N∆t = T remains constant, so that Eq. (B.66) becomes:

PT (n) = lim
∆t→0

N !

n!(N − n)!
(r∆t)n(1− r∆t)N−n

= lim
N→∞

N(N − 1) · · · (N − n + 1)

n!

(
r

T

N

)n (
1− r

T

N

)N−n

.

(B.67)
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By unfolding the terms in the previous equation, it follows:

PT (n) = lim
N→∞

N(N − 1) · · · (N − n + 1)

Nn

1

n!
(rT )n

×


(

1 +
−rT

N

) N
−rT




−rT (
1− r

T

N

)−n

.

(B.68)

Taking the limit and knowing that limǫ→0(1 + ǫ)1/ǫ = e, we obtain the following
equation for the discrete probability density:

PT (n) =
(rT )n

n!
e−rT , (B.69)

corresponding to a Poisson distribution, where the constant firing rate r appears
explicitly.

Two important statistical parameters of a random variable are the mean, or ex-
pected value, and the variance. The mean gives the most probable value of the
random variable after many observations. For a discrete random variable x, such
as the number of spikes in a spike train given by the discrete probability density
function (pdf) of Eq. (B.69), with discrete density PX(x), the mean value, or average,
is calculated from

µx = E{x} = 〈x〉 =
+∞∑

k=−∞
xk PX(xk) , (B.70)

where xk denote the values that the discrete random variable x can take and PX(xk)
their probability of occurrence. The variance gives a measure of the dispersion of the
values of the random variable x around its mean µx. It has the definition

σ2
x = VAR(x) = E{(x− µx)2}

= E{x2 − 2µxx + µ2
x} = E{x2} − µ2

x ,
(B.71)

where σ2
x ≥ 0 is a positive quantity. The last equality in Eq. (B.71) results from the

fact that the expectation operator E{·} defined in Eq. (B.70) is linear. This relation
holds both for discrete and continuous random variables and is very useful to calculate
the variance. For a discrete random variable, the variance can be computed directly
through the expression

σ2
x =

+∞∑

k=−∞
(xk − µx)2 PX(xk) . (B.72)

The expected number of spikes, and its variance, within a trial can be calculated
using Eq. (B.69) based on Eq. (B.70) and Eq. (B.72), respectively. However, these
quantities are more easily calculated with the help of the moment generating function.
The moment generating function, M(t), for a discrete probability density P (n) is
defined as [Papoulis and Pillai, 2002]

M(t) =
+∞∑

n=0

etn P (n) . (B.73)
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The moment generating function is useful because the different statistical moments,
mk, can be easily calculated by using the relation:

mk = M (k)(0) , k = 1, 2, · · · , +∞, (B.74)

where M (k)(0) is the k-order derivative calculated at the origin:

M (k)(0) =
dk

dtk
M(t)|t=0 . (B.75)

The pdf in Eq. (B.69) has the moment generating function:

M(t) =
+∞∑

n=0

etn (rT )n

n!
e−rT = e−rT

∞∑

n=0

(rT et)n

n!

= e−rT erT et

.

(B.76)

The expected number of spikes, 〈n〉 , in a trial with duration T described by the
Poisson pdf in Eq. (B.69), corresponds to the first moment, m1, of Eq. (B.76):

E{n} = 〈n〉 =
∞∑

n=0

nPT (n) = m1

= rT ,

(B.77)

which states that the expected number of spikes generated at a constant firing rate
is equal to the firing rate r times the considered time interval T . This can be seen
in Fig. B.25. The variance of the spike count in T is

σ2
n = E{(n− 〈n〉)2} = 〈n2〉 − 〈n〉2 = m2 −m2

1

= rT ,
(B.78)

which is equal to the expected number of spikes. A parameter that characterizes a
probability distribution is the Fano factor, defined as

F =
σ2

µ2
, (B.79)

where σ2 is the distribution variance and µ the mean. The Fano factor characterizes
the spike count variability, and, for the case of the Poisson distribution, it takes the
value

F =
σ2

n

〈n〉 = 1 . (B.80)

The fact that the spike count mean and variance are equal is a distinguishing char-
acteristic of a Poisson process. In practice, to analyze if a spike train is adequately
described by a Poisson process, one can check if its Fano factor is approximately one
[Berry II and Meister, 1998].
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Interspike Interval Distribution

The probability distribution of the time intervals between adjacent spikes is called
the interspike interval distribution, and it constitutes another useful characterization
of spike patterns.

Given a spike occurring at time ti, for some value of i, the ISI distribution gives the
waiting time for the next spike to occur. This probability is equal to the probability
that no spikes are generated during a certain interval of time times the probability
that a spike is generated in the next time interval.

The probability of not generating a spike in the time interval [ti, ti+τ ], given that a
spike occurred at ti, of a homogeneous Poisson process, can be obtained by plugging
n = 0 into Eq. (B.69), which gives

Pτ (n = 0) = e−rτ . (B.81)

The probability of generating a spike in the time interval ∆t, for a small ∆t, is given
by:

P∆t→0(n = 1) = r∆t . (B.82)

Therefore, the probability that a spike was fired at instant ti and that the next spike
is generated at ti+1, such that ti + τ ≤ ti+1 < ti + τ + ∆t is:

P (τ ≤ ti+1 − ti < τ + ∆t) = r∆t e−rτ . (B.83)

By definition, for a small ∆t, the probability density of the ISI is equal to the
probability in Eq. (B.83) divided by ∆t, which gives

pISI(τ) = r e−rτ , τ = ti+1 − ti, (B.84)

which shows that the interspike-time probability density for a homogeneous Poisson
spike train is exponential. As Fig. B.26 shows, the short interspike intervals are more
likely to occur while the long ones have an exponentially decaying probability that
is a function of their duration.

An interesting characteristic of the exponential pdf relevant to the description of
ISI distribution is that it is memoryless, meaning that the time that we have to wait
for a new spike is independent of the time that we have already been waiting so far.
Let us calculate the probability of a spike occurring in the next period of time τ0 +τ1,
given that we already have been waiting for it during τ0, which means that we want
to compute

PISI(t > τ0 + τ1|t > τ0) . (B.85)

By using Bayes’ law, this probability is equal to:

PISI(t > τ0 + τ1|t > τ0) =
PISI(t > τ0 + τ1)

PISI(t > τ0)
. (B.86)
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To calculate the probabilities in the numerator and denominator of Eq. (B.86), we
have to integrate the continuous pdf of Eq. (B.84)

PISI(t > τ0 + τ1) =

+∞∫

τ0+τ1

r e−rτ dτ = e−r(τ0+τ1) , (B.87)

and

PISI(t > τ0) =

+∞∫

τ0

r e−rτ dτ = e−rτ0 , (B.88)

giving
PISI(t > τ0 + τ1|t > τ0) = e−rτ1 = PISI(t > τ1) , (B.89)

which means that the fact that no spike was fired during the period τ0 does not
influence the probability of getting one in the next period τ1. From the interspike
interval pdf in Eq. (B.84), we can calculate the mean interspike interval.

For a continuous pdf, f(x), like the ISI density in Eq. (B.84) the mean, or expected
value, of the random variable x is defined as

E{x} = µx =

+∞∫

−∞
xf(x)dx , (B.90)

and the variance of the random variable x has the definition:

σ2
x = E{(x− µx)2} =

+∞∫

−∞
(x− µx)2f(x)dx . (B.91)

Using the definition of Eq. (B.90), the expected value for the ISI is:

E{τ} = µISI = 〈τ〉 =

∞∫

0

τr e−rτ dτ =
1

r
, (B.92)

and, by Eq. (B.91), the variance of the interspike intervals gives

σ2
ISI = 〈τ 2〉 − 〈τ〉2 =

∞∫

0

τ 2r e−rτ dτ −
(

1

r

)2

=
1

r2
. (B.93)

The coefficient of variation, defined as the ratio between the standard deviation,
σ, and the mean, µ, is given by

CV =
σ

µ
. (B.94)

For the ISI distribution of a Poisson spike train, it takes the value:

CV =
σISI

µISI
= 1 . (B.95)

Equation (B.95) is a required, but not sufficient, condition to identify a Poisson spike
train. For a renewal process, the Fano factor, evaluated over long time intervals,
approaches C2

V [Dayan and Abbot, 2001].
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B.2.3. Inhomogeneous Poisson Model of Spike Trains

As stated in Sec. B.1.2, the time-dependent firing rate r(t) gives the probability, per
unit of time, of a spike occurrence. Equation (B.22) states that the probability of a
spike occurring within a time bin of width ∆t, at time t, is r(t)∆t.

Due to the statistical independence of the spike occurrences for a Poisson process,
stated by Eq. (B.63), the occurrence probability of a sequence, with spikes placed at
time instants t1, t2, · · · , tn, is equal to the probability of finding the spikes in those
specific n time bins times the probability of not finding any spike in the remaining
N − n time bins (N = T/∆t).

The probability of finding a spike in a bin with width ∆t, centered at the time
instant ti, is r(ti)∆t, and the probability of not having a spike at the time bin tj

is 1 − r(tj)∆t. The probability of the particular spike train occurring with spikes
located exactly at times t1, t2, · · · , tn, where 0 ≤ ti ≤ T , is given by

P (t1, t2, . . . , tn)(∆t)n =
1

n!

N∏

j=1;j 6=i

(1− r(tj)∆t)
n∏

i=1

r(ti)∆t

=
1

n!

N∏

j=1

(1− r(tj)∆t)
n∏

i=1

r(ti)∆t

1− r(ti)∆t
,

(B.96)

where the index j represents all N possible time bins with width ∆t. The factor 1/n!
is introduced because the spikes are indistinguishable and there are n! different ways
of assigning the labels. The first product in the second equality of Eq. (B.96) can be
simplified by considering that

N∏

j=1

(1− r(tj)∆t) = exp




N∑

j=1

ln(1− r(tj)∆t)


 , (B.97)

and by simplifying the logarithm computation. Since ∆t can be made very small,
and since, for small x, the Taylor’s expansion of the logarithm in the neighborhood
of one is ln(1 + x) = x− 1/2x2 + 1/3x3 − · · · , then Eq. (B.97) can be approximated
to:

N∏

j=1

(1− r(tj)∆t) =

= exp




N∑

j=1

(
−r(tj)∆t− 1

2
(−r(tj)∆t)2 +

1

3
(−r(tj)∆t)3 + · · ·

)


= exp


−

N∑

j=1

r(tj)∆t +
1

2
∆t

N∑

j=1

r2(tj)∆t− 1

3
(∆t)2

N∑

j=1

r3(tj)∆t + · · ·

 ,

(B.98)

By applying the property

lim
∆t→0

T/∆t∑

j=1

f(tj)∆t =
∫

f(t)dt , (B.99)
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replacing the terms of the exponential of Eq. (B.98), and computing the limit when
∆t→ 0, we arrive at

lim
∆t→0

N∏

j=1

(1− r(tj)∆t)

= lim
∆t→0

exp


−

T∫

0

r(t)dt +
1

2
∆t

T∫

0

r2(t)dt− 1

3
(∆t)2

T∫

0

r3(t)dt + · · ·



= exp


−

T∫

0

r(t)dt


 .

(B.100)

The second product in Eq. (B.96) can also be simplified to:

n∏

i=1

(
r(ti)∆t

1− r(ti)∆t

)
= (∆t)n

n∏

i=1

(
r(ti)

1− r(ti)∆t

)
(B.101)

and the limit when ∆t→ 0 is:

lim
∆t→0

(∆t)n
n∏

i=1

(
r(ti)

1− r(ti)∆t

)
= (∆t)n

n∏

i=1

r(ti) . (B.102)

Replacing the simplifications obtained in Eq. (B.100) and Eq. (B.101), the discrete
probability density of Eq. (B.96) becomes

P (t1, t2, . . . , tn) =
1

n!
exp


−

T∫

0

r(t)dt




n∏

i=1

r(ti) , (B.103)

which corresponds to the probability density of a spike train with spikes occurring
exactly at the time instants t1, t2, . . . , tn.

The homogeneous Poisson process is a particular case of the inhomogeneous process
where the firing rate is held constant during the entire trial duration, r(t) = r. The
joint probability density for a given number of spikes occurring at specific instants
ti, for a constant firing rate, is

P (t1, t2, . . . , tn) =
1

n!
e−rT rn , (B.104)

which is independent of the time occurrence of the spikes. This density can be written
as a function of the spike count density, PT (n), for the homogeneous case given in
Eq. (B.69) as:

P (t1, t2, . . . , tn) = PT (n)
(

1

T

)n

. (B.105)
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Spike-count statistics

The spike-count distribution characterizes the distribution of the number of spikes
from a Poisson model. The joint probability density obtained in expression Eq. (B.103)
gives the probability of the occurrence of n spikes at the time instants t1, t2, · · · , tn.
To characterize the distribution of the number of spikes along a spike train, Eq. (B.103)
must be integrated for all possible time occurrences of the n spikes within T . That
is,

P (n) =

T∫

0

T∫

0

· · ·
T∫

0

P (t1, t2, · · · , tn)dt1dt2 · · · dtn

=

T∫

0

T∫

0

· · ·
T∫

0

1

n!
exp


−

T∫

0

r(t)dt




n∏

i=1

r(ti)dt1dt2 · · · dtn

=
1

n!
exp


−

T∫

0

r(t)dt




T∫

0

T∫

0

· · ·
T∫

0

n∏

i=1

r(ti)dt1dt2 · · · dtn ,

(B.106)

resulting in

P (n) =
1

n!
exp


−

T∫

0

r(t)dt






T∫

0

r(t)dt




n

. (B.107)

It should be noted that Eq. (B.69) can be generated from the previous expression
considering a constant firing rate equal to r. The average number of spikes can be
obtained with a similar procedure used for the homogeneous case, leading to

〈n〉 =

T∫

0

r(t)dt , (B.108)

which, for the particular case of a constant firing rate r, gives the result presented in
Eq. (B.77).

Interspike Interval Distribution

The ISI distribution for the inhomogeneous Poisson process can be obtained by cal-
culating the probability of not finding a spike during a time interval with length
τ , multiplied by the probability of firing a spike at t = τ + ∆t, with a small ∆t
. The probability that a spike is not fired during the time τ can be obtained from
Eq. (B.107) by making n = 0 and assuming that the trial has a duration τ , which
results in:

Pτ (n = 0) = exp


−

τ∫

0

r(t)dt


 . (B.109)

As before, the probability of generating a single spike within the small time interval
t ∈ [τ, τ + ∆t] is:

P∆t(τ ≤ ti ≤ τ + ∆t) = r(τ)∆t . (B.110)
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So the ISI probability density has the following density function:

pISI(τ) = exp


−

τ∫

0

r(t)dt


 r(τ) . (B.111)

B.2.4. Firing Rates and Neuron Refraction

Normally the firing of a spike affects the firing of the next spike since during a time
period known as the refractory time, when the neuron is restoring its ion levels, it is
unable to fire again [Berry II and Meister, 1998]. Therefore, so that the description
of the neuron firing as a Poisson process can be improved to take into account this
effect.

So usually the firing rate depends on the time ti the last spike was fired: r(t|ti).
The simplest way to introduce a refractory period is to consider the firing rate to be
given by [Gerstner and Kistler, 2002]:

r(t|ti) = r(t)T (t− ti) (B.112)

where T (t− ti) is refraction function.
The probability of a neuron not firing a spike can be generalized for refractory

firing rates. Supposing that a spike is fired at the time instant ti, the probability
that a spike is not fired during the time interval [ti, t], t ≥ ti, which is equivalent
to not fire a spike during τ = t − ti, can be obtained from Eq. (B.107) by making
n = 0 and assuming that the trial has a duration τ , and by considering now that the
firing rate is given by Eq. (B.112). By integrating the probability density from ti to
t, t ≥ ti, results:

P (no spike in [ti, t]|ti) = P (n = 0) = exp


−

ti+t∫

ti

r(τ |ti)dτ


 . (B.113)

This is an important quantity in the renewal process theory known by the survivor
function: S(t|ti). The survivor function, S(t|ti), gives the probability that the neuron
survives from ti to t without firing any spike. For a nonhomogeneous Poisson process
the survivor function is given by Eq. (B.109). Generalizing for a process with firing
rate intensity, or hazard, r(t|ti) the survivor function is:

S(t|ti) = exp


−

ti+t∫

ti

r(τ |ti)dτ


 . (B.114)

The ISI distribution for a general firing rate r(t|ti) can be obtained by multiplying
the probability of not finding a spike during the time interval [ti, t], t ≥ ti, given
by Eq. (B.113), by the probability of firing a spike at ti+1 = t+∆t, with a very small
∆t . As seen in Eq. (B.64), the probability of generating a single spike at time ti+1
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within the small time interval ti+1 ∈ [t, t + ∆t], now with the refractory firing rate,
is:

P (spike in [t, t + ∆t) = r(t|ti)∆t , (B.115)

so the ISI probability distribution is:

PISI(t|ti) = exp


−

ti+t∫

ti

r(τ |ti)dτ


 r(t|ti)∆t . (B.116)

By definition the ISI probability density is given by diving the ISI probability of
Eq. (B.116) by the infinitesimal time interval ∆t, leading to the following density
function:

pISI(t|ti) = exp


−

ti+t∫

ti

r(τ |ti)dτ


 r(t|ti) . (B.117)

Note that using Eq. (B.114) the ISI probability density can be written as:

pISI(t|ti) = S(t|ti)r(t|ti) . (B.118)

The integration of ISI probability density gives the probability that a neuron which
as fired a spike at ti will fire the next spike at t. So the survivor function is directly
related with the ISI probability density by:

S(t|ti) = 1−
t∫

ti

pISI(τ |ti)dτ. (B.119)

The derivative Eq. (B.119) gives that the ISI is also given by:

pISI(t|ti) = − d

dt
S(t|ti), (B.120)

in conjunction with Eq. (B.118) gives that the firing rate is:

r(t|ti) = − d

dt
S(t|ti)/S(t|ti). (B.121)

From (B.121) and Eq. (B.120) the firing rate with the ISI probability density can
be related by:

r(t|ti) =
pISI(t|ti)

S(t|ti)
=

pISI(t|ti)

1− ∫ t
ti

pISI(τ |ti)dτ
, (B.122)

where the last equality is due to Eq. (B.119).
The previous relations between the firing rate, survivor probability, and interspike

interval probability density are very useful since if any of these is obtained experi-
mentally the other quantities can be obtained easily [Dayan and Abbot, 2001].
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Refractory Firing Rates

The simplest refractory firing rate is to introduce an absolute refractory period after
the emission of a spike. The refraction function would be:

T (t− ti) = H(t− (ti − Tref)) (B.123)

where the firing rate is zero during a period Tref after the firing of a spike. The
firing rate intensity given by (B.112) is termed hazard function in the terminology
of renewal process.

Considering a spike train generated by a homogeneous Poisson with constant fir-
ing rate: r(t) = r (see Sec. B.2.2). Taking into account the absolute refractory
period of the neuron, a time period after the firing of a spike is introduced according
to Eq. (B.112) where the firing rate is zero, so that the neuron cannot fire within this
time interval. The firing intensity, becomes:

r(t|ti) = r H(t− (ti + Tref))

=

{
0, t < ti + Tref

r, t ≥ ti + Tref
.

(B.124)

From this firing rate the ISI probability density can be obtained with the help
of (B.117), which gives

pISI(t) =

{
0, t ≤ ti + Tref

r e−r[t−(ti+Tref )], t > ti + Tref

= r e−r[t−(ti+Tref )] H(t− (ti + Tref)).

(B.125)

For the homogeneous Poisson with absolute refractory process with the firing rate
of Eq. (B.124) the survivor function is:

S(t|ti) =

{
1, t < ti + Tref

e−r[t−(ti+Tref )], t ≥ ti + Tref

= H(t) +
[
e−r[t−(ti+Tref )]−1

]
H(t− (ti + Tref)).

(B.126)

The refractory firing rate of Eq. (B.124) is nonrealistic since the firing rate changes
instantly from zero to r at t = ti + Tref . A more natural firing rate is given by:

r(t|ti) = r
[
1− e−λ[t−(ti+Tref )]

]
H(t− (ti + Tref))

=

{
0, t < ti + Tref

r
[
1− e−λ[t−(ti+Tref )]

]
, t ≥ ti + Tref

,
(B.127)

that grows smoothly from 0, at t = ti + Tref , to r with a time constant 1/λ. Follow-
ing (B.114) the survivor function for this firing rate is:

S(t|ti) =

{
1, t ≤ ti + Tref

e−r[t−(ti+Tref )] er[1−e
−λ[t−(ti+Tref )]]/λ, t > ti + Tref

= e−r[t−(ti+Tref )] er(t|ti)/λ H(t− (ti + Tref)).

(B.128)

253



B. Characterization of the Neural Response

From Eq. (B.118) gives for (B.127) and (B.128) the ISI density:

pISI(t|ti) =





0, t ≤ ti + Tref

e−r[t−(ti+Tref )] er[1−e
−λ[t−(ti+Tref )]]/λ r

[
1− e−λ[t−(ti+Tref )]

]
, t > ti + Tref

= e−r[t−(ti+Tref )] er(t|ti)/λ r(t|ti) H(t− (ti + Tref)).
(B.129)

Other typical refraction functions include several sigmoid likewise functions.

B.3. Spiking Mechanisms

Since many existing retina models produce as their outputs an estimate of the firing
rate produced by the RGC, it is important to have a method to generate the spike
trains from the firing rate. To generate the spike trains from the firing rate, we can
follow the two distinct views already mentioned: we can generate a spike train from
the firing rate considering that r(t)∆t is the probability of the neuron to fire a spike
in the time interval ∆t, or we can look to r(t)∆t as the number of spikes that we
must generate in the time interval ∆t. We have seen that the two interpretations
given previously are equivalent for a small ∆t, but they can lead to two different
spike generation mechanisms.

B.3.1. Generation of Poisson Spike Trains

The spike trains are very often considered to be well described by a Poisson process.
We will see how to numerically generate a spike train from a variable firing rate
r(t) by considering the spike train as a Poisson process. There are two common
procedures for generating Poisson spike trains.

A first approach uses the probability of a spike occurring during a short time
interval, presented in Eq. (B.22). For a Poisson process, whether it is inhomogeneous
or homogeneous, the probability of generating a spike within the small time interval
is

P (n = 1 in [t, t + ∆t]) = r(t) ·∆t . (B.130)

By using this equation, a spike train can be generated by first dividing the time
duration of the trial into a sequence of small intervals of width ∆t, and also by
sampling the firing rate r(t) in intervals of width ∆t, composing the sequence r[n].
Then, a sequence of random numbers, x[n], is generated with a uniform distribution
in the interval [0, 1], and the two sequences are compared. Whenever r[n]∆t ≥ x[n],
a spike is placed at time bin n; otherwise no spike is generated. This procedure
is useful when r[n]∆t ≪ 1, and the generated spike trains have a discrete time
bin assigned to the spikes. The use of a time bin width of ∆t = 1 ms is usually
enough [Dayan and Abbot, 2001].

The second approach used to generate Poisson spike trains with a constant firing
rate is to choose the interspike intervals duration randomly from the exponential
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density for the interspike interval distribution [Berry II and Meister, 1998], given by
Eq. (B.84). Each successive spike is placed at a time equal to the previous one plus
a random value drawn randomly from the interspike density:

ti+1 = ti − ln(x)/r , (B.131)

where x is a random number generated from a uniform distribution in the interval
[0, 1]. However, in practice, when the obtained spike train is discretized to serve as
the input to the next block of a processing system, this procedure becomes equivalent
to the previous one.

To extend this last approach to generate a spike train with a time-varying firing
rate, a spike train is generated by considering a constant maximum firing rate rmax

ti+1 = ti − ln(x)/rmax , (B.132)

where rmax > r(t), for all t, and x is a random number with uniform distribution
in the interval [0, 1]. Then, a thinning process is applied to the spike train gener-
ated at rmax by keeping or deleting the spike posted at each ti. The thinning is
carried out by generating another random number x with uniform distribution for
each i, and if r(ti)/rmax < x the spike at time ti is removed; otherwise it is main-
tained [Dayan and Abbot, 2001].

The spiking mechanism of a real neuron breaks the assumption of independent
firing, as stated by Eq. (B.63), namely during the absolute and relative refractory
periods, where the probabilities of firing are null or very low, respectively; these
are the principal features of neuronal firing not modeled by a Poisson model. To
take into account the refractory effects in the Poisson model, the firing rate can be
modulated by a function with zero value just after a spike is fired and during the
absolute refractory period, and with an increasing exponential value tending to one
during the relative refractory period. The absolute refractory period is variable, and
it can be drawn randomly from a Gaussian distribution with a mean equal to the
mean absolute refractory period and variance equal to the variance of the absolute
refractory period [Dayan and Abbot, 2001].

The Poisson model can be further extended to include the neuron’s refractory pe-
riods [Berry II and Meister, 1998], and to model bursting cells that appear predom-
inantly in the visual cortex, where a neuron cell fires a burst of spikes in response to
one event [Bair et al., 1994].

B.3.2. Integrate-and-Fire Spike Generation

A straightforward interpretation of the firing rate as the number of spikes fired per
second allows for the conversion of r(t) to ρ(t) by generating a spike train with a
simple integrate-and-fire method. To code the firing rate r(t) into a set of spikes
pulses, as displayed in Fig. B.27, let us suppose that we start integrating the firing
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rate, r(t), at the time instant ti such that

v(t) =

t∫

ti

r(t)dt . (B.133)

Whenever the activation signal v(t) crosses a predefined threshold φ from below, that
is when v(t) ≥ φ, a spike is fired and the integrator is reset to its rest value

ρ(ti) =





δ(t− ti) v(ti) ≥ 0

0 otherwise
. (B.134)

Whenever a spike is fired, the feedback loop in Fig. B.27 is activated and the in-
tegrator value is reset to zero (v(t + δt) = 0), or, alternatively, a function of the
threshold, f(φ), with a negative value can be added to it. For the case of a constant
firing rate r, we have that v(t) = r × (t − ti), and a spike is fired when v(t) reaches
the threshold. Considering that the threshold is reached at the time instant ti+1,
such that v(ti+1) = r(ti+1 − ti) = φ, we have that the time between two spikes is
proportional to the inverse of the firing rate, ti+1 − ti = φ/r. Choosing the right
value for the threshold (1 in the previous case), we can generate a sequence of spike
trains whose spikes are generated according to the desired firing rate.

The computational implementation of an integrator can be accomplished by taking
the relationship between r(t) and v(t) into account, which can be written as

r(t) =
dv(t)

dt
. (B.135)

By applying the Euler approximation to the first derivative,

dy(nTs)

dt
=

y[(n + 1)Ts]− y[nTs]

Ts
, (B.136)

where Ts is the sampling period used in the discretization process, to Eq. (B.135),
we have that

r[nTs] =
v[(n + 1)Ts]− v[nTs]

Ts
, (B.137)

which results in a recursive expression for the computation of v(t) at the time instants
(n− 1)Ts, nTs, (n + 1)Ts, . . .:

v[n + 1] = v[n] + r[n] Ts (B.138)

where the argument dependence on Ts was dropped.
The comparator block in Fig. B.27 compares v[n] with the threshold, and whenever

it crosses φ, the output spike sequence is one (ρ̂[n] = δ[n] = 1) and the integrator
is reset to zero, or discharged by an amount equal to f(φ), so that v[n + 1] = 0, or
v[n + 1] = v[n]− f(φ), respectively.
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r(t) v(t) ρ(t)

δ(t− ti)

ti t

∫
φ

f(φ)

Figure B.27. Integrate-and-fire spike generation from firing rate.

B.4. Integration in the Leaky Integrate-and-Fire

Model

Despite quite straight, the result of the integration of the leaky integrate and fire
neuron model appears wrongly in several publications and in various sites in the
internet. We present next the detailed steps for the integration of the differential
equation for the leaky integrate-and-fire (LIF) model.

The leaky integrate-and-fire model is depicted in Fig. B.28. The differential equa-
tion for the LIF has the form:

Cm
dVm(t)

dt
+

1

Rm
(Vm(t)−Er) = Is(t) (B.139)

for a membrane resting potential equal to Er. This equation states that if the input
stimulus current is equal to zero (Is(t) = 0) for a long period of time the membrane
potential stabilizes (dVm(t)/dt = 0), then the membrane potential goes to the rest
potential: Vm(t) = Er in Eq. (B.140).

The differential equation Eq. (B.139) can be written in the form:

dVm(t)

dt
+

1

τm
Vm(t) =

1

τm
Er +

1

Cm
Is(t) , (B.140)

Is(t)

Cm

Vm(t)

Vθ

δ(t− ti)

Vr Vreset

tti ti+1

Rm Rint

Figure B.28. The integrate-and-fire (I&F) model.
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by introducing the membrane time constant τm = RmCm. By recalling the appro-
priate integration factor from differential equations theory, both sides of Eq. (B.140)
are multiplied by et/τm and the obtained equation is:

et/τm
dVm(t)

dt
+ et/τm

Vm(t)

τm
=

1

τm
Er et/τm +

1

Cm
et/τm Is(t). (B.141)

Integrating the left hand side of Eq. (B.141) between the initial time instant ti and
t, we get:

t∫

ti

(
e

x
τm

dVm(x)

dx
+

e
x

τm

τm

Vm(x)
)

dx = e
x

τm Vm(x)
∣∣∣
t

ti

= e
t

τm Vm(t)− e
ti

τm Vm(ti).

(B.142)

where it was used the fact that the expression under the integral is the derivative

of the product of the two functions: e
t

τm Vm(t). If the neuron has fired a spike at
the time instant ti then its membrane potential is at the reset value Vm(ti) = Vreset

(in general, this value is different from the membrane resting potential Er that is
often considered to be equal to zero: Er = 0). The integration of the right hand side
of Eq. (B.141) gives:

t∫

ti

(
1

τm
Er ex/τm +

1

Cm
ex/τm Is(x)

)
dx = Er(e

t/τm − eti/τm)+
1

Cm

t∫

ti

e
x

τm Is(x)dx, t ≥ ti .

(B.143)
Equating the results of Eq. (B.142) and Eq. (B.143), and by simplifying the terms,
the membrane potential between two spikes assuming that a spike was fired at t = ti,
so that Vm(ti) = Vreset, is given by

Vm(t) = Er + (Vreset − Er) e− (t−ti)

τm +
1

Cm

t∫

ti

e− t−x
τm Is(x)dx, t ≥ ti , (B.144)

by making a change of variables Eq. (B.144) takes the common form

Vm(t) = Er + (Vreset −Er) e− (t−ti)

τm +
1

Cm

t−ti∫

0

e−x/τm Is(t− x)dx, t ≥ ti . (B.145)

Using the Heaviside unit step function, defined by

H(t) =

{
0, t < 0
1, t ≥ 0

, (B.146)

Eq. (B.144) can be rewritten as

Vm(t) = Er+(Vreset −Er) e− (t−ti)

τm +
1

Cm

+∞∫

−∞
e−x/τm H(x) Is(t−x) H((t−ti)−x)dx, t ≥ ti .

(B.147)
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Recurring to the convolution operation Eq. (B.147) can be written as:

Vm(t) = Er +
[
e−t/τm H(t)

]
∗
[
(Vreset − Er) δ(t− ti) +

1

Cm

Is(t) H(t− ti)
]

. (B.148)

Alternatively, by introducing a change of variables Eq. (B.144) can also be written
as:

Vm(t) =Er + (Vreset −Er) e− t−ti
τm H(t− ti)+

1

Cm

+∞∫

−∞
e− (t−ti)−x

τm H((t− ti)− x)Is(x + ti) H(x)dx, t ≥ ti .
(B.149)

where the integral in Eq. (B.149) corresponds to a convolution operation, so that the
final expression for the solution of Eq. (B.140) can be written as

Vm(t) = Er + (Vreset −Er) e− t−ti
τm H(t− ti) +

1

Cm

[
e− t−ti

τm H(t− ti)
]
∗ [Is(t + ti) H(t)] ,

(B.150)
for a spike occurring at time instant ti and for t ≥ ti. The left shift of the input
stimulus current in Eq. (B.150) reflects the fact that only the current after the spike
occurrence ti contributes to the membrane potential, as the integral in Eq. (B.144)
states.

If the resting membrane potential is equal to the reset potential after a spike,
Er = Vreset, Eq. (B.150) becomes:

Vm(t) = Er +
1

Cm

[
e− t−ti

τm H(t− ti)
]
∗ [Is(t + ti) H(t)] , t ≥ ti , (B.151)

meaning that the neuron membrane stays at the rest potential in the absence of a
input current. If the resting potential is zero Eq. (B.150) becomes:

Vm(t) = Vreset e− t−ti
τm H(t− ti) +

1

Cm

[
e− t−ti

τm H(t− ti)
]
∗ [Is(t + ti) H(t)]

=
[
e− t−ti

τm H(t− ti)
]
∗
[
Vresetδ(t) +

1

Cm
Is(t + ti) H(t)

]
, t ≥ ti ,

(B.152)

However, extra care must be taken for the value given to Vreset since in the absence of
an external stimulus, the membrane potential will always decay to zero exponentially.

The expression of Eq. (B.148) states that the neuron membrane potential is at
the rest state, Vm(t) = Er, until a input stimulus excites the neuron so that the
membrane potential is incremented by the convolution of the input stimulus current,
Is(t), with the low-pass filter, e−t/τm H(t), and when a spike is fired the membrane
potential is reset to Vm(ti) = Vreset that decays exponentially to the resting potential.
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C
Bioelectronic Vision Systems

T
he ultimate goal for researching computational models for the retina is to
develop bioelectronic vision systems to aid patients suffering from blindness.
In the last years, research projects and consortia have been setup by joining

people from different fields, such as biomedical engineering, computer science and
electrical engineering. This appendix provides a brief overview of the most important
projects and prostheses, which are categorized according to the two main types of
bioelectronic vision: retinal prostheses, based on epiretinal and subretinal implants,
and cortical visual prostheses [Javaheri et al., 2006]. It also describes concisely a
prototype of a bioelectronic vision system designed in the scope of the Cortical Visual
Neuroprosthesis for the Blind (CORTIVIS) European project [Project CORTIVIS,
2006].

The book [Martins and Sousa, 2009] develops this subject further and describes
with more detail the process of design and implementation of a bioelectronic vision
system.

C.1. Bioelectronic Vision Labs

Several research groups, frequently involving multidisciplinary teams due to the sub-
ject, have been promoting projects to develop and demonstrate the feasibility of
artificial vision systems. Around the world there are under a dozen laboratories de-
voting significant resources and attention to the design and development of visual
neuroprosthesis. The huge challenge of artificially restoring vision to the blind poses
engineering and biological problems hard to overcome and also requires the process
of clinical human testing. This is an enormous effort for those who almost always
in an academic environment struggle to push this research area. Figure C.1 dis-
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plays a world map with the more relevant laboratories involved in the development
of bioelectronic vision systems.
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Figure C.1. World map of vision prosthesis research labs (adapted
from [Hessburg and Rizzo III, 2007]).
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C.2. Components of a Bioelectronic Vision System

The foremost component of the vision system is the eye. The eye is responsible
for gathering and transducing light energy to neural electrical signals, in the form of
electrical impulses, that are posteriorly conducted to the brain for further information
extraction. Roughly speaking, the eye is composed by an optical system that focuses
light on an neuronal tissue – the retina. In the retina the light patterns are encoded
into electrical signals where the neuronal processing starts, so that the retina can be
seen as an extension of the brain. The visual neuroprostheses must model the optical
eye system, which does not pose any major technological difficulties nowadays, and
the neuronal processing occurring in the retina, where the true challenge lies, and,
in case of a cortical prosthesis, mapping the electrical stimulus signals appropriately
in the brain.

Bioelectronic vision systems can be classified in two main classes of visual neu-
roprostheses: i) retinal neuroprostheses, and ii) cortical neuroprosthesis. Retina
neuroprostheses are suitable when the front end of the retina is functioning properly
while a cortical neuroprosthesis is the last hope when the retina is not functioning,
including the optic nerve, and only the superior brain vision centers remain intact
(see Fig. 1.1). The cortical neuroprosthesis interfaces directly with the visual pro-
cessing center in the brain, known as the visual cortex area V1, of profoundly blind
people, whose optical neurotransmitters are irreversibly damaged, substituting, in
this way, their entire vision system. The concept and components of a bioelectronic
vision system supported on a complete visual neuroprosthesis that interfaces directly
with the brain is depicted in Fig. C.4.

Figure C.2 displays the main blocks of a bioelectronic vision system. It includes
a set of components which, depending on the type of visual neuroprosthesis, can be
biological structures or their counterpart electronic circuits.

For example, an external video acquisition device is usually required for capturing
the visual field image and to convert the light patterns into electrical signals. How-
ever, when an array of stimulation electrodes is placed in the subretinal space, the
light photons of the image falling on the retina are converted into electrical currents
by an array of microphotodiodes that directly replace the function of the damaged
photoreceptors cells.

The digital signal processing system transforms the visual space image into a set of
discrete signals, according to the retina model and taking into account the visuotopic
organization of the target structure (the retina or the cerebral cortex, depending on
the prosthesis type). A module to transmit power and control signals to the implanted

Video
Encoder

Signal
Processing
Electronics

Power and
Control

Telemetry

Stimulator
Electronics

Neural
Interface

Figure C.2. Components of a visual neuroprosthesis.
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electronics is usually required [Piedade et al., 2005; Santos et al., 2006]. This module
provides energy and control signals to the stimulator that interfaces to the nervous
system to induce the perception of phosphenes, which is an entoptic phenomenon
characterized by the sensation of seeing light. The electronics, based on integrated
circuits and (micro)electrodes, has the ultimate goal of replacing the function of the
counterpart biological elements.

Image acquisition is a common task in engineering. For cortical or optic nerve
neuroprostheses, a generic small and full functional digital camera is suited for a
vision prosthesis in terms of dynamic range, sensitivity and depth of field and, as
also important, in terms of aesthetic. In a retinal neuroprosthesis the image encoder
can be integrated into the neural interface, and lay at the plane of the retina, with
the advantage that the eye optics can be used to project the image in the encoder.

In the signal processing block the biggest challenge is the mapping of the visual
space into the visuotopic organization of the target structure, particularly the visual
cortex. This is a somewhat complicated task due to the uniqueness of this map
among individuals, and because it is conformal only in low resolution; for high spatial
resolutions this mapping seems to be locally random. Therefore, parameterizable
models have to be developed for implementing this module and properly stimulating
individuals. This is a somewhat more complicated task due to the plasticity of
the visual pathways and the different possible combinations between electrodes and
phosphenes elicited. Based on the developed models, the electronics of this module
transforms the image into a discrete set of signals that drive the stimulators. To adapt
the intensity of the incoming light signals into the range level of the neurons being
stimulated an AGC can perform similarly to what is done by the photoreceptors. The
first two components of the visual neuroprosthesis are susceptible of being included
into a single device attached to a set of eyeglasses, and the elements of the visual
neuroprosthesis described in the sequel are likely to be located inside the patient.

The information from the visual scene must be conducted to the implant, and the
ways to do that are different for a retinal neuroprosthesis and a cortical neuropros-
thesis. There are two main ways to transmit signals through the skin: percutaneous
connectors [Dobelle, 2000] or using radio frequency (RF) telemetry [Piedade et al.,
2005]. On one hand, the percutaneous connectors have the advantage of being more
robustness and obviate the use of multiplexors, but on the other hand they have
the drawback of being a source of infections. On the other hand, a radio frequency
link have the challenge of communicating both power and control signals and have
to be bidirectional. In a retinal neuroprosthesis, a percutaneous connection would
have to pass to the outside of the eye through the sclera. For the case of a retinal
neuroprosthesis it can also be used a laser to transmit power and information to the
implanted circuits used to stimulate the target cells [Weiland et al., 2005]. All types
of connections have a series of constraints like bandwidth, which increases with the
number of electrodes in the neural interface, and also the transmitted power must be
limited in order not to cause damage to the tissues by heating.

The next component in the chain of Fig. C.2 is the neural stimulator that must also
be capable of exciting multiple electrodes at the same time in order to evoke consistent
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phosphenes. It receives power and data, namely through a telemetry sub-system,
and must be capable of controlling the amount of power delivered, to avoid the
damage to neighboring tissues, and should also be able to circumvent malfunctioning
electrodes, for example. The implementation of this module on chips presents a trade-
off between the processing capabilities and power consumption: increasing the process
capabilities of the chip diminishes the required link bandwidth but augments power
consumption and potential failures [Maynard, 2001]. The most adequate technology,
due to size and power consumption, is digital VLSI circuits [Warren and Normann,
2003].

The last element in a vision prosthesis is the interface with the nervous system.
The neural interface establishes the bridge between the nervous system and the exter-
nal electronics. It makes the transduction between the electrical currents generated
by the electronic device into ionic currents that flow inside the human body. For the
retinal neuroprosthesis the neural interface options range from silicon chips to specific
developed ceramic materials [Wu, 2006]. For cortical interfaces the oxidized iridium is
a candidate material because it has shown a good biocompatibility, and a good elec-
tronic to ionic current transducer. There are some more compatibility issues related
with the neural interface that must be taken into account [Warren and Normann,
2003].

In conclusion, before reaching the ganglion cells layer in the retina or the visual
cortex, the visual signal has already been subjected to a series of processing stages.
When the interface to the visual stimulus is made at the level of the ganglion cell
layer, as for the case of an epiretinal neuroprosthesis, the information at the output
must be identical to the one produced by a healthy retina; the transformation of the
visual space to the retinotopic space is done by modeling the neural processing of
the retina. For the case of a cortical neuroprosthesis the signal processing occurring
along the visual pathway should be in order to generate the adequate stimulus for
the neural interface.

C.3. Types of Visual Prosthesis

The efforts for conveying some kind of vision to profoundly blind people already have
some history [Rizzo III and Wyatt, 1997]. Throughout the world, several research
groups and consortia dedicate their efforts to design a vision prosthesis capable of
conveying to the blind people some kind of vision.

Some non-conventional approaches and electronic devices have been proposed to
convey vision to visually impaired people. In some of these devices the visual informa-
tion is converted to auditory [Arno et al., 1999] or tactile signals that are afterwards
communicated to the brain. A somewhat curious device is one that consists of a
flexible cable with a matrix of electrodes at the end that is placed against the patient
tongue and a pattern of electrical impulses stimulates its sensitive nerves [Weiss,
2001].

Bioelectronic vision systems are supported on visual neuroprostheses that inter-
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face with the following neural structures: i) the photoreceptors layer of the retina;
ii) the ganglion cells layer of the retina; iii) the optic nerve, and iv) the visual cor-
tex [Warren and Normann, 2003]. Thus, the prosthesis that still uses some part of
the human vision system are of three types: retinal neuroprosthesis and optic nerve
neuroprosthesis at the eye level; and cortical neuroprosthesis, at the brain level. The
retinal neuroprostheses use the remaining functioning parts of the retina to transmit
the visual signals to the brain, the optic nerve neuroprostheses stimulate what is
left of the optic nerve, whereas the aim with the cortical neuroprostheses is to inject
visual signals directly into the visual cortex.

The type of approach used in a visual prosthesis is related with the type of blindness
an individual suffers from. In one extreme, the blindness can derive from damages
at superior retina layers, as a consequence of early stages of diseases like the retini-
tis pigmentosa, and from some kinds of macular degeneration, where the principal
injuries occur at the photoreceptor layer but the ganglion cells layer remains mostly
intact, which allows their (re)usage. In this type of blindness a retinal neuropros-
thesis can be used. In the other extreme there is what is called profound blindness,
where the ganglion cells layers and the optic nerve are irreversibly injured and inca-
pable of transmitting any kind of nervous signals. In this case the reestablishment of
some sort of vision can only be done by the circumvention of the optic nerve and the
remaining option is to stimulate the visual cortex directly with an electronic device.
This is where cortical neuroprosthesis come into play.

An intermediate situation is the utilization of the optic nerve to conduct the visual
signals to the brain. Some of the retinal diseases leave a significant number of intact
ganglion cells dispersed along the retina, whose axons concentrate at the optic nerve.
The strategy is to induce the visual signals in this great bunch of ganglion cells at
the optic nerve expecting to excite conductive axons, which is a difficult task since
the axons are forming the optic nerve are arbitrarily organized and change from
individual to individual.

In the sequel the main characteristics of the prostheses that interface with the
retina and with the visual cortex are presented.

C.3.1. Retinal Neuroprosthesis

There are the two kinds of retinal implants as depicted in Fig. C.3. In a subretinal
implant the prosthesis is placed between the pigment epithelial layer and the outer
layer of the retina which contains the photoreceptors cells. Whereas the epiretinal
device is placed directly against the ganglion cells and their axons layer, bypassing the
rods and cones, stimulating directly the inner retina, being a more invasive technique
to the eye.

Unlike the subretinal implant, the epiretinal implant does not use any remaining
network of the retina for information processing. Thus, the epiretinal sensor has to
encode visual information as trains of electrical impulses that are then conveyed by
an electrode array directly into the ganglion cells axons, which unite to form the optic
nerve. This spatiotemporal stimulation pattern of electrical impulses has to represent
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Figure C.3. Epiretinal and a subretinal prosthesis [Weiland et al., 2005].

the visual information in such a way that it is understood by the brain visual cortex.
On the other hand, the information-transfer characteristics of the epiretinal implant
are more amenable to external control while the subretinal implant needs intact
original optics [Zrenner, 2002]. A relevant example of the development and test of a
subretinal implant is reported in [Chow et al., 2004], and an example of a epiretinal
implant can be found in [Rizzo III and Wyatt, 1997; Humayun et al., 1999].

Nevertheless, retinal neuroprostheses require the presence of viable cells in the
inner retina. Therefore, diseases limited primarily to the outer retina are poten-
tially treatable with a retinal neuroprosthesis. The references [Margalit et al., 2002]
and [Weiland et al., 2005] present an extended overview of retinal neuroprostheses.

One of these prostheses, termed "Bionic Eye", employs a new ceramic material
to substitute the retina’s photoreceptors, that act as a optic detector transducing
light into electrical impulses, by means of the photo-ferroelectric effect [Wu, 2006].
This material is directly implanted in the patient eye and, under optic illumination,
generates a photo-current that excites directly the retina ganglion cells. It seems to
be bio-compatible and it can be used in retinal dystrophies, where the optic nerve and
retinal ganglia are intact, such as in the Retinitis Pigmentosa, to directly stimulate
retinal ganglia.

Another example of a retinal neuroprosthesis is the artificial silicon retina (ASR)
microchip [Chow et al., 2004], which uses silicon technology [Optobionics Corporation,
2012]. The ASR microchip is a silicon-based 2mm in diameter device that contains
approximately 5000 microelectrode-tipped microphotodiodes and is powered by the
incident light. Eyes of patients with retinitis pigmentosa were implanted with the
ASR microchip. Patients did not show signs of implant rejection or infection and for
all them a vision function improvement have occurred.
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There are other examples of subretinal implants, namely the one that consists of
a chip (3× 3× 0.1mm, 1500 microphotodiodes, amplifiers and electrodes of 50× 50
micrometers, spaced 70 micrometers) and a 4x4 array of identical electrodes, spaced
280 micrometers, for direct stimulation. They were chronically implanted next to
the foveal rim of two blind retinitis pigmentosa patients [Zrenner et al., 2006]. The
implant was removed in one patient after 4 weeks but the other decided to keep
the implant. Patients reported small, yellowish or greyish phosphenes for individual
electrode stimulation and they were able to differentiate spatial patterns such as
lines, angles or bright squares.

There is a second type of approach at the low level of the visual system whose
functioning principle is to stimulate directly the optic nerve, obviating the utilization
of the retina layers, possibly damaged. These devices are implanted around the optic
nerve stimulating electrically its fibers [Brélen et al., 2005]. This type of prosthesis
also needs a way to model the function of the retina.

C.3.2. Cortical Visual Neuroprosthesis

Cortical visual neuroprostheses are bioelectronic systems that use the visual cortex
in the brain as the interface between the electronics components and the biological
vision pathway. A last resource for blind individuals that can not benefit from a
retinal neuroprosthesis is the direct stimulation of the visual cortex. This is the last
hope when the retina is not functioning at all, including the optic nerve, because
retinal neuroprostheses rely on it to transmit electrical signals from the eye to the
visual cortex. The visual cortex is a brain vision center accessible and it is well
positioned to be stimulated. This kind of neuroprostheses include all the electronic
components presented in Fig. C.2 to substitute the biological counterparts, shown
in Fig. 1.1.

The first permanent device developed and applied for chronic stimulation of neu-
ral tissue was accomplished in 1968 [Brindley and Lewin, 1968]. This device had
80 electrodes, each with its own controlling unit (receiver). Using this system, it
was demonstrated the feasibility of a permanent cortical vision neuroprosthesis by
observing that the electrical stimulation of the occipital lobe of the human cortex
causes a subject to perceive phosphenes.

Despite this initial success [Dobelle and Mladejovsky, 1974] the surface electrodes
have a number of drawbacks: currents necessary to induce a phosphene are rel-
atively high (of the order of milliampere), consequently the distance between the
electrodes have to be considerable in order to minimize their interactions due to
current spread, but that degrade the spatial resolution; moreover, current injection
can produce short and long term complications depending upon the level of current
injected [Agnew and McCreery, 1990].

Two main groups have been working during the 1990’s towards cortical vision
prosthesis. One was based at the National Institutes of Health (NIH) in Washing-
ton, D.C., and the other at the John Moran Laboratories in Applied Vision and
Neural Sciences at the University of Utah. Both groups have tried to overcome the
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problems referred above by employing penetrating microelectrodes instead of using
surface electrodes on the visual cortex. On example of these microelectrode arrays
made available by the technologies in the semiconductor manufacturing [Maynard,
2001], was developed in the Utah University and is known as the Utah Electrode
Array: 10 × 10 microelectrodes, each with 1.0 − 1.5mm long, disposed in a square
grid contained in a package with dimensions 4.2 × 4.2mm [Maynard et al., 1997;
Normann et al., 1999]. The silicon micromachining and micromanufacturing tech-
nologies allow the fabrication of small arrays with a large number of microelectrodes
capable of stimulating only the neurons nearest to the electrode and with a small
amount of current (in the order of dozens of µA). The major concerns with the
microstimulation are related with biocompatibility and long term functioning of the
inserted microelectrode array.

Research is going on to design and develop cortical visual neuroprostheses through
intracortical stimulation, but no one of these prostheses has been permanently ap-
plied for chronic stimulation. Besides the technical and pathological issues, the con-
sequences of direct stimulation of the brain and implications in terms of personal
identity and personhood are important concerns [Mathews, 2011], notwithstanding
that the stimulation of the visual cortex should mainly affect vision.

The European research project CORTIVIS aimed to design and develop a com-
plete visual neuroprosthesis to restore useful vision sense to profoundly blind peo-
ple [Project CORTIVIS, 2006]. It performs intracortical microstimulation through
one or more Utah Electrode Array implanted (see Fig. C.9a) into the primary visual
cortex. The system is composed by a primary unit located outside the body and a
secondary unit, implanted inside the skull that communicate with each other using
wireless communication technology. Figure C.4 displays a conceptual sketch of the
prototype bioelectronic vision system. The book [Martins and Sousa, 2009] contains
a more detailed description about the design and implementation of the prosthesis
prototype.

C.4. Retinal Prostheses

People with retinal degeneration diseases, such as retinitis pigmentosa or macular
degeneration, lose their sight as the cells in the retina that normally sense light
deteriorate. Retinal implants can take over for these lost cells, converting light into
neural signals that are then interpreted by the brain. Simple versions of these devices
have already been tested in humans, giving patients the ability to detect light and to
distinguish simple objects. The epiretinal approach has the advantage of leaving the
retina intact by placing the implant in the vitreous cavity, a natural fluid-filled space,
and stimulating the ganglion cell layer. On the contrary, the subretinal implantation
of a retinal prosthesis only replaces potentially damaged photoreceptors with a mi-
crostimulator by taking advantage of the remaining healthy cells of the retina. This
type of implant requires detaching the retina in a more complex surgery, and the
retina is a fragile tissue only 0.25 mm thick.
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Figure C.4. The Cortivis intracortical visual prosthesis [Project CORTIVIS, 2006].

C.4.1. Epiretinal implants

The epiretinal approach to the retinal prosthesis involves the capture and digital-
ization of images with an external device, such as a video camera. These images
are transformed into patterns of electrical signals used to excite remaining viable in-
ner retinal neurons. Power delivery and data telemetry sub-systems are required to
drive this process. Several research groups have designed epiretinal implants based
on intraocular and external elements with different characteristics: i) the Intraoc-
ular Retinal Prosthesis (IRP), developed by Mark Humayun and colleagues at the
University of Southern California [Humayun et al., 1996]; ii) Joseph Rizzo and John
Wyatt developed an epiretinal prosthesis at the Harvard Medical School and the
Massachusetts Institute of Technology [Wyatt and Rizzo, 1996]; and iii) the Retina
Implant (RI) was developed by Rolf Eckmiller with a consortium of 14 expert groups
in Germany [Eckmiller, 1997].

The IRP uses an external camera to acquire the image, which is passed through
a visual processing unit to generate the information that is coded in the form of
electrical pulses patterns. These patterns are transmitted into the eye by an induc-
tive link telemetry system, composed of magnetic coils implanted in the temporal
skull. The electrical stimulation pattern is delivered, via a transscleral (across eye
wall) cable, to an array of microelectrodes attached to the inner retinal surface to
stimulate viable inner retina neurons (intraocular part of the prosthesis). The first
array stimulates inner retinal neurons through 16 platinum microelectrodes, ranging
in size from 250 µm to 500 µm. Recent technological advances allowed the number
of microelectrodes to increase to 60 and to incorporate microelectromechanical sys-
tems (MEMS) in order to achieve a better fit of a planar electrode array onto a curved
inner retinal surface.
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Clinical trials testing chronic long-term implantation of the IRP have been per-
formed in 6 patients implanted with 16-electrode arrays manufactured by the Second
Sight Medical Products [Javaheri et al., 2006]. Reports of these trials show that pa-
tients are able to distinguish the direction of motion; they also have the ability to
discriminate between percepts created by different electrodes, and the retinotopic
organization is not lost when a patient loses sight [Lakhanpal et al., 2003].

The retina implant team (EPI-RET) has developed the RI and founded the In-
telligent Implants company in 1998. The implant is composed of a Retina Encoder
(RE), a wireless Signal-and-Energy transmission system (SE), and a Retina Stimu-
lator (RS). The RE, which is located outside the eye, consists of a photosensor array
with around 100,000 pixels at the input. The RE approximates the typical receptive
field properties of retinal ganglion cells by means of hundreds to thousands of tunable
spatiotemporal filters. This cell output is encoded and transmitted via a wireless,
signal and energy transmission system (electromagnetic and/or optoelectronic) to
the implanted RS. The RS is a ring-shaped, soft microcontact foil centered about
the fovea that is fixed to the epiretinal surface to be in contact with a sufficient
number of retinal ganglion cells to elicit electrical spikes. The RE also provides a
perception-based interaction between the RE and the human subject in order to tune
the various receptive fields’ filter properties with information "expected" by the cen-
tral visual system. Eckmiller and his group have been testing the RE/RS mainly in
animals [Walter et al., 1999]. They have chosen to focus their efforts on understand-
ing the information processing requirements of both the retinal prosthesis and the
brain in terms of a dialogue-based RE tuning [Eckmiller et al., 1999]. Clinical trials
have been primarily focused on testing of the RI implant and dialogue-based RE
tuning. Rizzo and Wyatt epiretinal implants also consist of independent intraocular
and extraocular units, without batteries implanted within the body and no wires
penetrating the eye. The extraocular unit is composed of a tiny charged couple de-
vice (CCD) camera, a signal processing unit and a fixed-direction laser; all mounted
on a pair of glasses. The output of the CCD camera/signal processing unit modulates
the amplitude of the laser beam (820 nm wavelength). The extraocular unit runs
with replaceable batteries to be kept in the patient’s pocket. The intraocular unit
consists of a photodiode array and a stimulator chip sandwiched around a flexible
thick polyamide strip that supports the electrodes. The photodiodes are used to
capture the processed signal from a laser pulse emitted from the glasses. The stimu-
lator chip then delivers this information to the microelectrode array on the epiretinal
surface of the eye. Rizzo and Wyatt have applied implants in 5 blind patients with
Retinitis Pigmentosa, and 1 normal-sighted patient who was scheduled for enucle-
ation due to orbital cancer. Three different types of electrode arrays were tested,
with different numbers of electrodes, size, and spacing of the peripheral electrodes.
The reported results from short-term studies were not conclusive. By stimulating a
single electrode above a threshold level, multiple phosphenes were often perceived
by the blind subjects. However, by simultaneously stimulating multiple electrodes
it was not possible to perceive even the simplest visual pattern, neither by blind
nor by normal-sighted patients. Due to the problems that Rizzo and Wyatt found
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in epiretinal stimulation, they have abandoned the epiretinal approach and are now
developing a subretinal approach, which will be discussed in the next section.

C.4.2. Subretinal implants

In the subretinal approach, a microphotodiode array has to be implanted between the
bipolar cell layer and the retinal pigment epithelium. The main advantage of this type
of implant is that the microphotodiodes of the subretinal prosthesis directly replace
the functions of the damaged photoreceptor cells, while it is assumed that the retina’s
remaining intact neural network is still capable of processing the generated electrical
signals.

Subretinal implants were proposed by: i) Alan and Vincent Chow, who have de-
veloped the Artificial Silicon Retina (ASR) microchip [Chow et al., 2004]; ii) Eber-
hart Zrenner and a consortium of research universities using a MicroPhotoDiode
Array (MPDA) [Zrenner et al., 1998]; and, more recently, iii) Rizzo and Wyatt
[Wyatt and Rizzo, 2006], who have developed a third type of subretinal prosthesis.

Alan and Vincent Chow of Optobionics Corp believed that a subretinal implant
could function as a simple solar cell; therefore, their ASR Microchip was powered
entirely by light entering the eye [Peyman et al., 1998]. With a diameter of two mil-
limeters, the ASR contains approximately 5000 microelectrode-tipped microphotodi-
odes used to convert incident light into electrical signals. These electrical impulses, in
turn, stimulate any viable retinal neurons, which then process and send these signals
to the visual processing centers in the brain via the optic nerve. Ophthalmologist
Alan Chow and his team at Optobionics tried this approach in people in the year
2000. They implanted a silicon disk with 5000 microscopic solar cells, or photodiodes
in one eye in 30 people. Most of these implant recipients have reported moderate
to significant improvements in at least one aspect of visual function, including light
sensitivity, size of visual field, visual acuity, or movement or color perception. Many
doubts arise about these results, because the amount of current needed to actively
stimulate retina ganglion cells is not in the range of the current obtained from a
photodiode [Wickelgren, 2006]. In fact, Chow abandoned the concept that the ASR
Microchip is effective as a prosthetic device, and now he suggests that the insufficient
levels of current delivered from the implant may have a therapeutic as well as neu-
roprotective effect on otherwise dying retinal photoreceptors. Therefore, this device
is best classified as a therapeutic device, rather than as a true retinal prosthesis.

The SubRet consortium has designed and fabricated various types of ultrathin and
flexible MPDA devices, as well as CMOS-based chips with different pixel sizes and
electrode configurations. The first generation of developed MPDAs, similar to the
original work of Chow, consists of 20×20 µm2 pixels on a 3 mm diameter crystalline
silicon chip. After this first generation, this team developed a special deposition
technique to produce very thin and flexible MPDAs that fit to the curvature of the
eyeball. They used amorphous hydrogenated silicon which has a light absorption
20-30 times higher than crystalline silicon. Biomedical experiments conducted by
Zrenner and his team made clear that a purely photovoltaic operation is not effec-
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tive, so additional energy has to be input by near infrared or radio frequency power
transmission. A charge transfer of 100-1000 µC/cm2 within 1 ms is required for pro-
voking a retina response, while light exposure at a retina location does not exceed
0.1 µW/cm2. Prototypes of their subretinal devices, with external power source to
supply energy for the subretinal implant, have been proposed, namely using near
infrared radiation.

By implanting their prosthesis in rabbits, cats, and pigs, they attempted to detect
electrically stimulated activity in the visual cortex as a result of retinal stimulation,
as well as investigate the long-term biocompatibility and stability of these implants in
the subretinal space. In nearly half of the tested animals, cortical evoked potentials
were recorded with chronically implanted epidural electrodes during stimulation with
light flashes, as well as during electrical stimulation of the subretinal space.

As stated in the last section, Rizzo and Wyatt decided to start working on subreti-
nal implants. Although the Boston Retinal Implant Project is in the early stages of
development, they have reported biocompatibility studies as well as the evaluation
of surgical methods to implant their device in rabbits, pigs, and dogs. Minimally
invasive surgical techniques have been tested, by using a posterior, ab externo ap-
proach to implant the prosthesis and to insert the stimulating electrode array in the
subretinal space.

The main advantage of subretinal implants in comparison to the epiretinal ap-
proach is that the microphotodiodes replace directly the functions of the damaged
photoreceptor cells, while the remaining intact neural network of the retina retina is
still capable of processing electrical signals. However, the closer proximity of the sub-
retinal prosthesis to inner retinal neurons predisposes the contacted retinal neurons
to an increased likelihood of thermal injury resulting from heat dissipation. Together
with the lack of external sources of energy for the microphotodiodes, this is one of
the main problems of invasive neuroprostheses based on subretinal implants.

Open issues are the long-term biocompatibility of microelectronics in the saline
environment of the eye, both in terms of hermetic packaging of the microfabricated
electrode arrays, and the heat generated and dissipated with its use. Also included
in these biocompatibility issues is the unknown effect of chronic electrical stimulation
on the retina.

C.5. Retinal Bioelectronic Vision System Design

The design and implementation of bioelectronic vision systems for epiretinal and sub-
retinal prostheses have been a topic of research during the last few years. A number
of issues have to be addressed in order to design and implement bioelectronic vision
systems based on retinal neuroprostheses. One important aspect is the interface be-
tween the electrode array and the retina, namely regarding biocompatibility and the
requirement to conform with the spherical, concave surface of the retina. It is also
necessary to supply power to permanent implants through a wireless system, since no
wires are expected to go through the eye wall. Moreover, the electrical stimulation’s

273



C. Bioelectronic Vision Systems

Retina

Image

Processor

Isolation

Box

Control

Electronics

Micro-cable

Nano-channel

Glass

Microelectronic

Multiplexer

Figure C.5. Intraocular test device.

pulse rate and the instant of occurrence need to be determined in a general way, but
may need to be individually tuned for each patient.

Some numbers about visual acuity that can be useful to consider for designing
bioelectronic vision systems are: normal visual acuity (20/20) corresponds to angular
separation of lines about 1 min of arc or spatial separation on the retina of about
10 µm; applying the Nyquist sampling frequency, for such visual acuity the maximum
pixel size is 5 µm. Sufficient acuity (20/100) for reading with some visual aid requires
pixels smaller than 25 µm. To achieve a useful reading performance, it has been
estimated that about 600 pixels is the minimum for resolving images in the central
field [Margalit et al., 2002].

The architectures of an intraocular epiretinal prosthesis test device [Scribner et al.,
2001], and of a proposed system that can be used for both epiretinal and subretinal
stimulation [Loudin et al., 2007] are overviewed. This latter system is based on a
photodiode array implant, and video frames are processed and conveyed onto the
retinal implant by a head-mounted near-to-eye projection system operating at near-
infrared wavelengths.

The intraocular test device will enable short-term (less than an hour) human
experiments to study issues related with interfacing electrode arrays with retinal
tissue. The design combines two technologies: i) electrode arrays fabricated from
NanoChannel Glass (NCG), and ii) Infrared Focal Plane Array (IRFPA) multiplex-
ers. Figure C.5 shows an IRP test device to be used in acute human experiments.
Ophthalmologists use standard retinal surgical techniques in an operating room en-
vironment to perform the experimental procedure. Local anesthesia is administered
so that the patient is conscious during the procedure.

NGC uses fiber optic fabrication techniques to produce thin wafers of glass with
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millions of very small channels with a diameter on the order of 1 µm, perpendicular
to the plane of the wafer. These channels are filled with a good electrical conductor,
and one surface of the glass is shaped with a spherical form consistent with the radius
of the retina curvature. The image is serially input into the multiplexer via a very
narrow flexible microcable. The real function of the micro-electronic multiplexer
in Fig. C.5 is essentially the reverse of the IRFPAs microelectronic multiplexers,
acting as a demultiplexer to read an image onto the stimulator array. The electrical
connection to the silicon multiplexer is made so there is nothing protruding above
the spherical curved envelope defined by the polished NCG surface, and therefore
protects the retina from damage.

Because the test duration with the IRP experimental device are very short, there
was no need to address the more difficult chronic issues that arise with permanent
implants. Since patients are connected to external instrumentation during experi-
ments, electrical shocks are prevented by isolating them using low voltage batteries
and optocouplers to input signals.

A simplified layout of the general system architecture for implementing both epireti-
nal and subretinal protheses is presented in Fig. C.6. It includes a goggles-mounted
video camera, an image processor and a near-infrared (NIR) display. An extraocular
power supply is connected to the subretinal implant. The inset shows a magnified
view of a small area of the retinal implant.

The proposed video camera acquires and transmits 640×480 pixel images at 25-
50 Hz to a pocket PC. This computer processes data and displays the resulting video
on an liquid crystal display (LCD) matrix mounted on goggles worn by the patient.
The LCD screen is illuminated with pulsed NIR (NIR wavelength: 800-900nm) light,
projecting each video image through the eye optics onto the retina. The NIR light
is received by the photodiode array on an implanted chip, where each photodiode
converts the NIR signal into a proportional electric current which is injected into the
retina through an electrode placed in its center.

The projected NIR image is superimposed onto a normal image of the scene ob-
served through the transparent goggles. Therefore, electrical stimulation introduces
visual information into the retinal tissue above the implant, while any remaining pe-
ripheral vision responds normally to visible light. Such overlay is possible because NIR

light does not activate normal photoreceptors, and the implant’s response to natural
visible light in the eye is negligible when compared to the bright and pulsed infrared
image.

The prosthesis provides stimulation with a frame rate of up to 50 Hz in a central
10◦ visual field, with a full 30◦ field accessible via eye movements. Pixel sizes are
scalable from 100 µm to 25 µm, which allows an acuity up to 20/100 to be achieved,
which corresponds to 640–10,000 pixels on an implant with 3 mm in diameter.

Charge injection is maximized by biasing the photodiodes using a common pulsed
biphasic power supply. Since the stimulation pulse must be synchronized with the IR
light pulse, the system requires both power delivery and a trigger signal. Delivering
20 µA, 0.5 ms pulses to 640 electrodes at 50 Hz requires a peak current of about
two tenths of a milliampere. The power transmission system is composed of a pair
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Figure C.6. A simplified layout of a retinal implant (adapted from [Loudin et al., 2007]).

of inductively coupled coils: the transmitter coil is mounted beside the eye on the
goggles, while the receiving coil and associated electronic circuit are implanted on
the eye. The operating frequency of this transmission system is limited to 1 MHz.
The AC current from the receiving coil is rectified using a half-wave rectifier, which
collects charge into a tantalum electrolytic capacitor to provide DC current to the
rest of the circuit.

One of the most important characteristics of this bioelectronic vision system is
the fact that it can be used both for epiretinal and subretinal stimulation. The
optical projection of the images into the eye also preserves a natural link between
eye movements and visual information. Given that video goggles project images
onto a retinal area much larger than the chip itself, a larger field of view can be
observed with natural eye movements. Moreover, the parallel optical transmission
of information during stimulation avoids the use of multiple wires connecting the
acquisition system to the electrode array. The main disadvantage of this system is
the fact that the photodiodes are placed in series with the electrodes, which prevents
the generation of some types of typical biphasic stimulation waveforms, such as the
symmetric biphasic current pulses.
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Figure C.7. Layout of the array of electrodes (looking through the electrodes).

C.6. Cortical Visual Prostheses

The first attempt to demonstrate the feasibility of a multichannel cortical neuropros-
thesis by exploiting the retinotopic organization of the visual cortex was undertaken
by Brindley and Lewin in 1968. They permanently implanted an array of 80 platinum
disc electrodes subdurally onto the pial surface of the visual cortex of a volunteer
who had been blind for more than a year. It was concluded that spatially discernable
phosphenes could be evoked in 32 electrodes, the location of a phosphene roughly
corresponded to the position of the stimulating electrode, and that small sets of
phosphenes could be evoked by concurrently stimulating few electrodes.

In the last decades of the twentieth century, several researchers have studied and
analyzed the neurophysiological principles that allow the production of phosphenes.
One of these important studies was performed by Daniel Pollen [Pollen, 1975] by an-
alyzing phosphenes production when transcranial magnetic stimulation was applied.
In those years, several blind volunteer subjects were permanently implanted with
cortical surface electrode arrays, namely by Dobelle [Dobelle, 2000].

Before attempting to construct a permanent implant, Dobelle decided to con-
duct a series of acute experiments involving volunteers undergoing other neurosurg-
eries [Dobelle and Mladejovsky, 1974]. Phosphene positions were mapped, thresholds
were determined, and different stimulus parameters were tried. Some attempts were
also made to combine single phosphenes into crude visual patterns. Two blind volun-
teers were implanted in 1978 at the Columbia-Presbyterian Medical Center in New
York City, and they have both retained their implants for more than 20 years.

A platinum foil ground plant is perforated with an array of 5 mm diameter holes
with 1 mm centers flat platinum electrodes centered in each hole, as Fig. C.7 depicts.
The ground plane eliminates phosphene interactions when multiple electrodes are
stimulated simultaneously, and provides an additional measure of electrical safety
that is not possible when stimulating between cortical electrodes and a ground plane
outside the skull. Each electrode is connected by a separate teflon insulated wire to
a connector contained in a carbon percutaneous pedestal.

Stimulation delivered to each electrode typically consists of a train of six pulses de-
livered at 30 Hz to produce the stimulation corresponding to an image frame. Frames
have been produced with 1-50 pulses, with frame rates varying from 1 to 20 frames-
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Figure C.8. A diagram of the Dobelle apparatus layout of a visual prosthesis.

per-second (fps). From experience, typical values are 4 fps, which includes trains
containing only a single pulse. Biphasic symmetric 1 ms pulses are applied with
threshold amplitudes between 10-20 V, which may vary up to ±20% from day to
day; the system was calibrated on a daily basis.

It has been shown that these cortical implants allow blind people to recognize
patterns when several phosphenes are induced in parallel. Over time, they were even
able to perform simple tasks, such as recognize and find objects with different forms
in simple scenarios. However, to stimulate this type of surface electrode, which is
placed at the surface of the visual cortex, the current has to be sufficiently high
(on the order of mA) in order to induce an electrical field able to stimulate internal
neurons of the visual cortex. Moreover, the distance between electrodes restricts
the resolutions, preventing the perception of more complex patterns. Another main
disadvantage of the surface cortical visual prothesis described by Dobelle is that the
apparatus includes a connector supported on a pedestal implanted in the skull, which
receives the cables from the processing device and convey the signals to the implant
in the cortex. This connector can be a source of infections, which can lead to serious
health problems.

Intracortical microstimulation is a more recent technique for developing cortical
visual prostheses. This technique is based on the insertion of microelectrodes in the
visual cortex, with 1 mm to 2 mm long. The insertion allows the deep layer of neurons
to be directly stimulated, decreasing the required current several orders of magnitude,
from mA to µA. These arrays of microelectrodes not only considerably reduce the
required current, but also increase safety and reduce the distance between electrodes;
this allows the increase of spatial resolution of the phosphene patterns. The laborato-
ries that have developed the most relevant research work in intracortical implants are
from the Illinois Institute of Technology [Troyk et al., 2006], the National Institutes
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(a) Microphotograph of the mi-
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Figure C.9. The Utah Microelectrode Array.

of Health [Schmidt et al., 1996], and the University of Utah [Normann et al., 1999].

At the University of Utah, the team of Richard Normann has designed a microelec-
trode array for recording and stimulating single cells in the cortex. It consists of 100
microelectrodes with 400 µm spacing, each 1.5 mm long and fabricated on a silicon
wafer that measures 4 mm on a side. An electron micrograph of this silicon-based
microelectrode array is presented in Fig. C.9a. A technique was developed to insert
the electrodes into the cerebral cortex with a single movement, and when inserted,
it allows a high density of stimulation points to be achieved and it stimulates up to
layer IV of the visual cortex (see Fig. C.9b).

This array has also been used in the Cortical Visual Neuroprosthesis for the
Blind (CORTIVIS) project [Ahnelt et al., 2002] described with more fine details in
[Martins and Sousa, 2009]. The main objective of this project was to show the feasi-
bility of an artificial vision system capable of conferring to profoundly blind people
some kind of vision, namely the discrimination of shape and location of objects, re-
sulting in a substantial improvement in the standard of living of blind and visually
impaired persons.

A scheme of a bioelectronic vision system, with the main modules of the CORTIVIS
cortical neuroprosthesis, is represented in Fig. C.10. This system includes an image
capture device, often a video camera, that captures the visual stimulus and converts it
into electrical signals, usually electrical currents or voltages. These electrical signals
are sampled, quantized and processed in the Neuromorphic Encoder module. This
module is responsible for all the required digital processing, including the generation
of the spike events used to stimulate the visual cortex neurons. The information about
these events is serialized and can be transmitted to inside the skull through electrical
connectors, as in [Dobelle, 2000], or through a wireless communication system. In
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Figure C.10. Bioelectronic vision system based on the CORTIVIS neuroprosthesis
(from [Piedade et al., 2005]).

both cases, the Electrode Stimulator module responsible for exciting the visual cortex
cells through a microelectrode array has to be implanted in the visual cortex by a
neurosurgeon. However, while the latter approach reduces the risk of infections, and
therefore improves the patient health level; it poses the need for wireless delivery of
both power and data [Piedade et al., 2005].

In the next sections, we describe and analyze in more detail the bioelectronic vision
system developed to implement an intracortical visual neuroprosthesis in the scope
of the CORTIVIS project.

Bioelectronic vision systems result from the contributions of several different areas
of science and engineering, namely biology, neuroscience, signal processing and micro-
electronics. These bioelectronic vision systems can be supported in retinal implants
or in cortical implants.

Retinal implants have advantages over cortical implants with regard to surgical
implantation and access to target nerve cells, and offers less resistance from patients.
Additionally, the mapping of the retina, which lies in the back of the eye, to a
physical location in space is well known. The types of retinal implants are delineated
primarily by the anatomical location of the electrode–neuron interface, which can be
on the epiretinal surface or in the subretinal space. For the latter type of implant, the
microphotodiodes directly replace the functions of the damaged photoreceptor cells,
while the remaining intact retina’s neural network processes the electrical signals.
Epiretinal implants rely on external imaging devices, that include a camera to acquire
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the environment images, and an external image processor.
Regarding epiretinal prostheses, subretinal prostheses do not require external cam-

eras or image processing units, and the patient’s eye movements can be used to locate
objects. However, the lack of an external source of energy for the microphotodiodes
in the subretinal prosthesis is a significant drawback, since the level of ambient light
is not sufficient to produce the current generated by the microphotodiodes necessary
to stimulate the adjacent retinal neurons.

Clinical trials testing chronic longterm implants have been performed since the
early 2000s in humans, both for subretinal and epiretinal prostheses [Javaheri et al.,
2006]. In the trial periods, which vary from a few months to several years, it was
demonstrated that patients perceived phosphenes in response to the electrical stim-
ulation of the retina. Biocompatibility studies were performed in order to examine
the effects of an extraneous body in the subretinal space, and surgical methods to
implant the device have been evaluated as well. It has been demonstrated that the
idea behind the simple subretinal approach is not effective because it lacks a viable
source of power [Zrenner, 2002]. It is believed that the low levels of current deliv-
ered from the implant, although insufficient to electrically activate any remaining
retinal neurons in a retina with damaged photoreceptors, may have therapeutic and
neuroprotective effects for otherwise dying retinal photoreceptors.

Experiments have been reported in animals with prototypes of subretinal devices
that contain external power sources. This power source supplies energy to the sub-
retinal implant by means of very thin wires that run outside of the eye [Sachs et al.,
2005]. Systems have been also designed to be used for both epiretinal and subretinal
stimulation. In one of these systems [Loudin et al., 2007], near infrared light is sent
to a photodiode array, which converts it into an electrical current that is injected
into the retina. Charge injection is increased by biasing the diodes using a common
power supply. In this system, the camera is mounted in the goggles, and the power
transmission system consists of a pair of inductively coupled coils; the transmitter
coil is mounted beside the eye on the goggles, while the receiving coil and associated
electronic circuit are implanted in the eye.

For retinal blindness with degeneration of the ganglion cell neuron, which in turn
gives rise to the optic nerve axons, a retinal prosthesis would not be helpful. There-
fore, visual cortical prostheses have been pursued by a number of individual re-
searchers and groups since the 1960s; it was experimentally shown that phosphenes
could be evoked by stimulating electrodes implanted in the visual cortex.

Cortical prostheses are much more complex, not only because they have to account
for the significant signal processing that must be implemented, but also due to the
challenge of positioning electrodes precisely in the primary visual cortex. Dobelle
was the first to develop a cortical neuroprosthesis and to implant blind volunteers
with permanent electrode arrays in the visual cortex. This cortical neuroprosthesis
includes a television camera, which is mounted into a pair of sunglasses, linked to a
sub-notebook computer in a belt pack. The belt pack also contains another micro-
controller and associated electronics to stimulate the brain. This stimulus generator
is connected through a percutaneous pedestal to the planar electrodes on the visual
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cortex, in this case an array of about 64 surface electrodes. Although it has been
shown that the cortical implants allow blind people to recognize patterns when sev-
eral phosphenes are induced in parallel, significant drawbacks are associated with this
approach to developing visual prostheses. Some of the difficulties include interactions
between phosphenes and multiple phosphenes induced by a single electrode, as well
as the usage of high currents and large electrodes. Occasionally, pain was caused by
meningeal stimulation, and possible focal epileptic activity was induced by electrical
stimulation [Pollen, 1977]. Another main disadvantage of the surface cortical visual
prothesis described by Dobelle is that the apparatus includes a connector implanted
in the skull, which can lead to health problems due to infections.

A second generation of intracortical prostheses has been developed in order to
overcome the main drawbacks identified in the first generation of intracortical visual
prostheses. This type of visual neuroprosthesis performs intracortical microstimula-
tion through an array of microelectrodes implanted into the primary visual cortex.
The space between microelectrodes is quite reduced and the microelectrodes are in-
serted in depth to directly stimulate the neurons in the inner layers of the visual
cortex. Microelectrode arrays are fabricated on a silicon wafer, and typically have
a spacing of hundreds of micrometers and depths of about 1 mm [Maynard et al.,
1997]. This new generation of intracortical prostheses makes use of wireless implants
to multichannel microstimulation [Sawan et al., 2005]. Wireless inductive links carry
power and stimulus information to inside the cranium, usually by means of a low-
coupling transformer. This wireless link establishes a path between the primary unit,
located outside the body, and the secondary unit, implanted inside the body. In this
chapter, we have presented in detail the intracortical prosthesis developed in the
scope of the Cortical Visual Neuroprosthesis for the Blind (CORTIVIS) project. In
this prosthesis, the primary unit comprises a neuromorphic encoder, a forward trans-
mitter and a backward receiver. The developed neuromorphic encoder generates the
spikes to stimulate the cortex by mimicking the characteristics of the spatiotemporal
receptive field response of ganglion cells. The secondary unit comprises a forward
receiver, a microelectrode stimulation circuitry and a backward transmitter that is
used to monitor the implant. A prototype of the proposed system was developed
and tested in animals. However, clinical trials have to be further performed in order
to test the implantation of the microelectrode array and the operation of an entire
intracortical prosthesis.

All of this research has paved the way toward restoring useful vision to profoundly
blind people by interfacing a cortical neuroprosthesis with the visual cortex. However,
several issues have to be addressed by research groups such as: the biocompatibility
of microelectronics and microelectrodes, the heat generated and dissipated by the
intracranial module space, and the plasticity of the visual system in response to
electrical stimulation. Attention also has to be given to understanding how the brain
interprets a stimulation pattern resulting from an increasing number of electrodes,
which is also a crucial issue in the evolution of vision prosthetic design. At last it is
important to have the involvement of companies to produce, manufacture and test
these devices medically. Hence the research community will be able to perform visual
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psychophysical experiments, in order to develop stimulation algorithms that result
in the "best" perceptions.

While still a mirage, blind individuals will certainly require high resolution visual
prosthesis. This requirement is more likely to be fulfilled first by retinal prosthesis.
Surveys with these patients indicate that mobility without a cane, face recognition
and reading are the main necessary enabling capabilities [Weiland and Humayun,
2008]. However the results and implications of fully functional visual prostheses
are exciting and the challenges ahead are demanding and promise to be exciting.
Table C.1 resumes the main pros and contra of the different approaches and the
challenges in the development of visual prosthesis.

Table C.1 summarizes the main pros and contra of the different approaches, referred
in this chapter, to develop visual neuroprostheses.
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Table C.1. Main pros and cons of visual prostheses approaches.

Advantages Disadvantages

Visual Cortex

Only approach possible for a non-
functional retina and/or optic nerve
Implant site robust and protected by
skull
Easy surgical access
High density electrode implantation
Phosphene thresholds are low (1-10
µA)

Stimulation far from photoreceptors
Possibly poor visuotopic organization
Multiple feature representations in V1
(color, lines, motion, ocular domi-
nance)
Societal phobias about "brain implant"
Consequences of surgical complications

Epiretinal

Stimulating close to photoreceptors:
uses native processing in thalamus and
cortex
Less surgical complications than in cor-
tical
Saccadic eye motions cause sheer loads
on implanted arrays
Difficult to adhere the electrode array
to the retina

Requires functional optic nerve path-
way
May stimulate optic nerve fibers:
greatly complicate visuotopic organiza-
tion

Subretinal

Stimulation closest to photoreceptors:
uses retinal, thalamic and cortical pro-
cessing
If bipolar cells can be directly stim-
ulated retinotopic organization should
be preserved
Less surgical complications than in cor-
tical implants

Requires functional retina and optic
nerve pathway
Blockage of nutrients from choroid by
the implant
Very complex surgical access
Can’t stimulate cells passively with mi-
croimplants (requires external power)

Optic Nerve

Less surgical complications than in cor-
tical

Requires functional optic nerve path-
way
Visuotopic organization requires plac-
ing electrodes at many closely spaced
regions of the optic nerve
Complex electrode array to provide
patterned vision
Very difficult surgical access
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