
INSTITUTO POLITÉCNICO DE BEJA

Escola Superior de Tecnologia e Gestão

Mestrado em Internet das Coisas

Lisímetro Inteligente com Monitorização da
Cultura e Ambiente

Uma Aproximação IoT

Carlos Manuel dos Santos Almeida

2024

INSTITUTO POLITÉCNICO DE BEJA

Escola Superior de Tecnologia e Gestão

Mestrado em Internet das Coisas

Lisímetro Inteligente com Monitorização da
Cultura e Ambiente

Uma Aproximação IoT

Elaborado por:

Carlos Manuel dos Santos Almeida

Orientado por:

Professor Doutor José Jasnau Caeiro, IPBeja

Professor Doutor João Carlos Martins, IPBeja

Dissertação de Mestrado
Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Beja

2024

Agradecimentos
A realização desta dissertação de mestrado contou com diversos apoios e incentivos,

sem os quais não seria possível a sua concretização.
Em primeiro lugar quero agradecer aos meus orientadores pela excelente orientação,

incentivo, apoio e total disponibilidade para a realização deste trabalho.
Agradeço em particular ao Professor Doutor José Jasnau Caeiro, pelos seus ensinamen-

tos e pelos desafios que me colocou, os quais me permitiram adquirir novas competências.
Entre os diversos desafios, destaco o desafio de realizar um artigo científico para apresentar
numa conferência de IoT.

Agradeço em particular ao Professor Doutor João Carlos Martins, a preciosa ajuda nas
revisões da dissertação, assim como na realização do artigo científico, nomeadamente na
sua tradução e revisão.

Agradeço também ao Dr. João Santos pelo seu contributo na realização do artigo
científico.

Agradeço a todos os professores do curso de mestrado em Internet das Coisas, os co-
nhecimentos que transmitiram ao longo do curso, esses conhecimentos foram fundamentais
para conseguir concluir este trabalho.

Agradeço a todos os meus colegas do curso de mestrado a troca de conhecimentos nas
diversas áreas, em particular àqueles com quem fiz trabalhos de grupo.

Agradeço ao IP Beja por ter um curso de mestrado em Internet das Coisas em regime
Pós-laboral e blended-learning, só deste modo foi possível o acompanhamento das aulas, e
a concretização deste trabalho.

Para finalizar quero agradecer à minha esposa Rita Pereira e ao meu filho Tiago Al-
meida, o apoio, e a compreensão no decorrer deste trabalho.

i

Resumo

Lisímetro Inteligente com Monitorização da Cultura
e Ambiente
Uma Aproximação IoT

Adotando uma abordagem IoT apresentamos um modelo de lisímetro inteligente, melho-
rado com análise de pragas e o estado da cultura. Além da obtenção do balanço tra-
dicional de evaporação-transpiração, o lisímetro mede parâmetros adicionais tais como a
temperatura e humidade do solo, a diferentes profundidades; temperatura e humidade do
ar; exposição à luz solar (visível e infravermelho). Além disso, o sistema faz a captura
imagens de alta resolução da cultura alvo. Estas imagens são processadas localmente,
para redução de dados que são armazenados posteriormente numa plataforma remota. O
objetivo principal é a monitorização e com vista ao aumento da produtividade global da
cultura. Este lisímetro também fornece dados para um sistema global de monitorização
de recursos hídricos que integra informações de várias fontes: outros lisímetros, estações
meteorológicas, sistemas de monitorização da qualidade da água, etc.. O resultado deste
trabalho culminou no desenvolvimento e teste de um protótipo funcional.

Palavras-chave: Lisímetros Inteligentes, Agricultura de Precisão, IdC, Gestão da
Água, Evapotranspiração.

iii

Abstract

Smart Lysimeter with Crop and Environment
Monitoring
An IoT Approach

A model of a smart lysimeter, adopting an IoT approach, enhanced with pest and crop state
analysis is presented. Besides the measurement of the traditional evaporation-transpiration
balance, the lysimeter senses additional parameters like the soil temperature and humidity
at different depths; air temperature and humidity; sunlight exposition (visible and infra-
red). Additionally, the system can capture high-resolution images of the target culture.
These images are locally processed for data reduction and the main features are stored in
a remote platform afterwards. The main goal is the monitoring and enhancement of the
global crop yield. This lysimeter also provides data for a global water resources system
that integrates information from several sources: lysimeters, weather stations, water qua-
lity monitoring systems, etc.. The result of this work culminated in the development and
testing a functional prototype.

Keywords: Smart Lysimeter, Precision Agriculture, IoT, Water Management, Evapo-
transpiration.

v

Índice

Agradecimentos i

Resumo iii

Abstract v

Índice vii

Índice de Figuras xi

Índice de Tabelas xiii

Índice de Listagens xv

Abreviaturas e Siglas xvii

1 Introdução 1
1.1 Enquadramento da Dissertação . 1
1.2 Contributos da Dissertação . 3
1.3 Estrutura do Documento . 4

2 Estado da Arte 7
2.1 Introdução . 7
2.2 Lisímetros . 8
2.3 Aquisição de Imagem . 9
2.4 Análise de Colheitas . 20
2.5 Conclusão . 21

3 Arquitetura do Lisímetro 23
3.1 Estrutura Geral do Lisímetro . 23

vii

Índice

3.1.1 Camada Física . 24
3.1.2 Camada na Nuvem . 26
3.1.3 Camada de Aplicação . 28

3.2 Arquitetura do Hardware . 28
3.3 Conclusão . 29

4 Implementação Experimental 31
4.1 Introdução . 31
4.2 Módulo Lisímetro . 31

4.2.1 Escolha de componentes . 32
4.2.2 Implementação do módulo do lisímetro 45

4.3 Módulo Câmara . 51
4.3.1 Escolha de componentes de hardware 52
4.3.2 Implementação do módulo câmara 55

4.4 Módulo de Computação na Nuvem . 58
4.5 Estrutura de Suporte . 63
4.6 Aspetos Experimentais . 64

4.6.1 Construção do protótipo . 64
4.6.2 Gestão de energia . 65
4.6.3 Visualização dos dados . 66

4.7 Conclusão . 68

5 Conclusões 69
5.1 Conclusões gerais . 69
5.2 Desenvolvimento Futuro . 70

Bibliografia 73

Apêndices 85

I Código desenvolvido 87
I.1 MCU Módulo lisímetro . 87
I.2 SoC ESP8266 . 127
I.3 MCU do módulo da câmara . 130
I.4 SBC RPi . 137
I.5 Node-Red . 141

viii

Índice

II Esquemas elétricos / Desenhos PCB 143
II.1 Esquema Elétrico do Módulo Lisímetro . 144
II.2 Esquema Elétrico do Módulo Câmara . 145
II.3 Parte frontal da PCB câmara (KiCad) . 146
II.4 Parte traseira da PCB câmara (KiCad) . 146

III Custo de implementação 147

Anexos 151

I Datasheets dos componentes 153

ix

Índice de Figuras

1.1 Diagrama da Evapotranspiração . 2

2.1 Passos usados numa CNN . 11
2.2 Passos usados no método convencional . 12
2.3 Comparações de desempenho dos métodos ML avaliados 13
2.4 Comparações de desempenho de RF com diversos n.º de árvores 14
2.5 Tabela comparativa de métodos e classificadores 15
2.6 Exemplo do histograma da imagem - Planta saudável vs Planta doente 15
2.7 Pontos de intercepção com ORB . 16
2.8 Modelo da arquitetura de uma DCNN . 16
2.9 Arquitectura do sistema com ANN . 18
2.10 Métodos usados no estudo . 19

3.1 Estrutura física do lisímetro . 24
3.2 Arquitetura do sistema de um lisímetro com aquisição de imagens 25
3.3 arquitetura do hardware do sistema . 29

4.1 Diagrama de blocos do hardware do módulo lisímetro 33
4.2 Estrutura interna do MCU MSP430G2553 . 35
4.3 Módulo WLAN ESP-01 com SoC ESP8266 . 35
4.4 Módulo com sensor de temperatura e humidade ambiente SHT30 36
4.5 Módulo com Sensor de Luminosidade TSL2561 36
4.6 Sensor de temperatura DS18B20 á prova de água 37
4.7 Sensor Capacitivo para Medição da Humidade do Solo 38
4.8 Célula de carga de 50Kg com 1/2 ponte de Wheatstone 38
4.9 Esquema de ligação de 4 células de 1/2 ponte de Wheatstone. 39
4.10 Diagrama de blocos do CI HX711 . 39
4.11 Módulo com CI HX711 . 40
4.12 Célula de carga de 10Kg . 40

xi

Índice de Figuras

4.13 Medição da Tensão da Bateria do Lisímetro 41
4.14 Servomotor HS-422 para abertura de válvula do vaso da água drenada 42
4.15 Painel solar de 5V 1W . 42
4.16 Módulo Controlador de Carga de Bateria com TP4056 43
4.17 Bateria de iões de lítio INR18650-35E da Samsung SDI 43
4.18 Circuito do interruptor de potência com MOSFET 44
4.19 Circuito do conversor DC/DC para alimentar o MCU 45
4.20 Placa de desenvolvimento EXP430G2ET . 46
4.21 Diagrama de funcionamento do Módulo Lisímetro. 47
4.22 Placa de programação de módulos ESP-01 . 48
4.23 Esquema Elétrico Completo do Módulo Lisímetro 50
4.24 Caixa do módulo lisímetro . 51
4.25 Visão geral do lisímetro. 51
4.26 Diagrama de blocos do módulo câmara . 52
4.27 Módulo câmara Raspberry Pi V2 . 53
4.28 SBC Raspberry Pi 3B+ . 54
4.29 Módulo VMA402 - Conversor DC/DC . 54
4.30 Imagem do exterior do módulo câmara . 57
4.31 Imagem do interior do módulo câmara . 58
4.32 Virtualização dos serviços na nuvem . 58
4.33 Comparativo entre contentores docker e máquinas virtuais 59
4.34 Diagrama de funcionamento do protocolo MQTT 60
4.35 Diagrama de fluxo do Node-Red. 61
4.36 Painel de indicadores dos sensores do lisímetro. 62
4.37 Painel com gráficos das últimas 48h dos sensores do lisímetro. 63
4.38 Medidas da Estrutura do Lisímetro [mm]. 64
4.39 Cálculo da energia diária do módulo lisímetro. 65
4.40 Cálculo da energia diária do módulo câmara. 66
4.41 Dados dos sensores apresentados num Smartphone. 67
4.42 Direita: Exemplo de uma imagem capturada, Esquerda: Detalhe da imagem

ampliada. 68

xii

Índice de Tabelas

3.1 Acrónimos do hardware do sistema . 28

4.1 Especificações/requisitos pretendidas para o protótipo. 32
4.2 Componentes de hardware do módulo lisímetro. 34
4.3 Código desenvolvido para o MCU MSP430G2553. 46
4.4 Código usado no SoC ESP8266. 48
4.5 Componentes de hardware do módulo câmara. 52
4.6 Código desenvolvido para o MCU do módulo da câmara. 55
4.7 Bibliotecas instaladas no SBC RPi . 56

III.1 Cotação de material para o módulo lisímetro. 148
III.2 Cotação de material para o módulo câmara. 149

xiii

Índice de Listagens

I.1 Código do programa principal main.c (MCU Módulo lisímetro). 87
I.2 Código CDC.c (MCU Módulo lisímetro). 95
I.3 Código delay.h (MCU Módulo lisímetro). 97
I.4 Código ds18b20.c (MCU Módulo lisímetro). 98
I.5 Código ds18b20.h (MCU Módulo lisímetro). 102
I.6 Código hx711.h (MCU Módulo lisímetro). 103
I.7 Código servo.h (MCU Módulo lisímetro). 107
I.8 Código sht3x.h (MCU Módulo lisímetro). 108
I.9 Código TSL2561.h (MCU Módulo lisímetro). 110
I.10 Código swi2c_master.c (MCU Módulo lisímetro). 112
I.11 Código swi2c_master.h (MCU Módulo lisímetro). 122
I.12 Código do programa principal do ESP8266 (SoC ESP8266). 127
I.13 Código main.c MCU (Módulo câmara). 130
I.14 Código start.py SBC . 137
I.15 Código camera.py SBC. 137
I.16 Código copyimage.py SBC. 138
I.17 Código mqtt.py SBC. 139
I.18 Código shutd.py SBC. 140
I.19 Código Data.js . 141

xv

Abreviaturas e Siglas

ADC Analog to Digital Converter

AI Artificial Intelligence

ANN Artificial Neural Network

ARM Advanced RISC Machine

CBB Cassava Bacterial Blight

CBSD Cassava Brown Streak Disease

CCV Color Coherence Vectors

CCS Code Composer Studio

CCV Color Coherence Vectors

CGM Cassava green mite

CMD Cassava Mosaic Disease

CNC Computer Numerical Control

CNN Convolutional Neural Network

CoAP Constrained Application Protocol

CPU Central Processing Unit

CSI Camera Serial Interface

DCNN Deep Convolutional Neural Network

DL Deep Learning

DT Decision Tree

EDA Electronics Design Automation

ERT Extremely Randomized Trees

ET Evapotranspiração

xvii

Abreviaturas e Siglas

FCM Fuzzy C-means Clustering

FNR False Negative Rate

GCH Global Color Histogram

GMM Gaussian Mixture Modelling

GPIO General Purpose Input/Output

GPRS General Packet Radio Services

HOG Histograms of Oriented Gradients

HSV Hue, Saturation, Value

I2C Inter-Integrated Circuit

IC Integrated Circuit

IDE Integrated Development Environment

IoT Internet of Things

JSON JavaScript Object Notation

KNN K-Nearest Neighbour

LBP Local Binary Pattern

LPM Low Power Mode

MCU Microcontroller Unit

MQTT Message Queuing Telemetry Transport

NB Naive Bayes Algorithm

MIA Make Intelligent Applications

ML Machine Learning

NoSQL Not only SQL

NTP Network Time Protocol

ORB Oriented FAST and Rotated BRIEF

PCA Principal Component Analysis

PCB Printed Circuit Board

PWA Progressive Web App

RF Random Forest

xviii

RFID Radio Frequency Identification

RGB Red Green Blue

RMSP Root Mean Square Propagation

RPi Raspberry Pi

RSA Rivest-Shamir-Adleman

SBC Singe Board Computer

SFTP Secure File Transfer Protocol

SGD Stochastic Gradient Descent

SGLDM Spatial Gray Level Dependence Matrices

SIFT Scale-Invariant Feature Transform

SMS Short Message Service

SO Sistema Operativo

SoC System on Chip

SSH Secure Shell

SURF Speed-ed Up Robust Features

SVC Support Vector Classifier

SVM emphSupport Vectors Machines

TPR True Positive Rate)

UART Universal Asynchronous Receiver-Transmitter

URL Uniform Resource Locator

VM Virtual Machine

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

ZB ZigBee

xix

Capítulo 1

Introdução

O tema da dissertação é o projeto e o desenvolvimento de um lisímetro tendo por base o
paradigma da Internet das Coisas (Internet of Things (IoT)).

O lisímetro é um instrumento muito utilizado na agricultura e tem como função base
a medição da Evapotranspiração (ET) de uma cultura.

Os lisímetros medem a evapotranspiração (ET) do solo e das plantas. São usados
na agricultura há alguns séculos e têm como objetivo principal quantificar a necessidade
hídrica das plantas de forma a fornecer apenas a quantidade de água necessária ao seu
crescimento saudável. Sendo a água fundamental para o desenvolvimento socioeconómico,
para a produção de energia e alimentos, para a construção de ecossistemas saudáveis e
para a sobrevivência da espécie humana. O seu uso criterioso é essencial para fazer frente
às alterações climáticas, servindo como elo crucial entre a sociedade e o meio ambiente [1].

1.1 Enquadramento da Dissertação

A evapotranspiração é a medida da perda de água do solo por evaporação e a perda
de água da planta por transpiração. Numa cultura, temos um equilíbrio hídrico entre
a entrada e saída de água. Na entrada do sistema temos a água da chuva, da rega e
devida à condensação. Na saída temos a água drenada, a água perdida por evaporação e
transpiração. A Figura 1.1 apresenta o balanço dos ciclos de água numa cultura.

Usando uma abordagem IoT, é descrito a estrutura e o desenvolvimento de um lisímetro
acrescentado de um conjunto de sensores que permitem medir outros parâmetros relevantes
para a agricultura, para além da evapotranspiração. Os parâmetros adicionais medidos pelo
lisímetro são: a temperatura e humidade do solo a diferentes profundidades; temperatura e
humidade do ar; exposição à luz solar (visível e infravermelho). O sistema, permite também

1

1. Introdução

Evapotranspiração (ET)

Água drenada

água

águaCondensação

Rega água

Evaporaçãoágua

Transpiraçãoágua

águaChuva

Cultura

Figura 1.1: Diagrama da Evapotranspiração.

capturar imagens de alta resolução da cultura alvo. Essas são processadas localmente para
redução da quantidade de dados, que são armazenados posteriormente numa plataforma
remota.

O objetivo principal do lisímetro é a recolha de dados com vista ao aumento da produti-
vidade global da cultura, e a poupança de água. Este lisímetro também fornece dados que
são integrados num sistema global de gestão e monitorização de recursos hídricos, que inte-
gra informação proveniente de diversas fontes: outros lisímetros, estações meteorológicas,
sistemas de monitorização da qualidade da água, sistemas de informação geográfica.

A Monitorização de Culturas com IoT

O sistema descrito recorre a sensores de imagem que, juntamente com microcomputadores
(Singe Board Computer (SBC)), e sensores ambientais (temperatura, humidade e lumino-
sidade) permitem monitorizar o desenvolvimento de culturas agrícolas e/ou eventualmente
prevenir e detetar o surgimento de doenças e pragas. O processamento destes dados será
feito na Cloud recorrendo a técnicas de Machine Learnig e Deep Learning. Prevê-se que
após uma prévia aprendizagem dos modelos, seja possível detetar atempadamente proble-
mas com a cultura de modo a gerar e enviar avisos necessários ao agricultor. Este sistema
de monitorização de culturas têm uma componente de processamento digital de imagem e
outra de aprendizagem automática.

2

1.2. Contributos da Dissertação

1.2 Contributos da Dissertação
A dissertação apresenta como ponto principal a concepção dum sistema de monitorização
de colheitas baseado numa arquitectura IoT. Este sistema foi desenvolvido a partir do
trabalho de análise da documentação publicada recentemente sobre sistemas similares na
sua natureza. Os contributos com este trabalho, são os seguintes:

1. Reunião e análise de informação sobre: a arquitectura dos sistemas; grandezas moni-
torizadas; sensores e demais componentes electrónicos, microcomputadores e micro-
controladores.

2. Projeto e desenvolvimento de uma arquitetura que combina a obtenção do valor da
ET, com a aquisição de dados adicionais da cultura e do ambiente, e ainda a avaliação
do estado de saúde da cultura através da aquisição e processamento de imagem, tudo
num sistema único. Esta abordagem tem vantagens relativamente a sistemas não
integrados, nomeadamente:

a) Maior eficiência energética;

b) Menor custo económico;

c) Processamento de dados centralizado;

d) Correlação de dados dos diversos sensores de cada lisímetro;

e) Correlação de dados entre os diversos lisímetros;

f) A aprendizagem obtida através de técnicas de Deep Learning (DL) num deter-
minado lisímetro é partilhada com os restantes. Todos os lisímetros contribuem
com os seus dados para uma melhor precisão global do sistema.

3. Concepção de um protótipo experimental de elevada precisão recorrendo às mais
recentes tecnologias IoT, e com custos controlados. A realização experimental, per-
mite:

a) Comprovar a eficácia da arquitetura desenvolvida;

b) Detetar e corrigir falhas na arquitetura do sistema;

c) Detetar e corrigir falhas na arquitetura de hardware;

d) Avaliar a robustez do sistema;

e) Obter dados reais para análise posterior;

f) Quantificar o custo real de implementação do sistema.

3

1. Introdução

4. Analise do desempenho do protótipo experimental implementado, a qual permitiu:

a) Comprovar a precisão dos sensores usados nos lisímetros;

b) Avaliar a performance da gestão de energia, nomeadamente a autonomia das
baterias;

c) Avaliar a facilidade de acesso à informação gerada pelo sistema, através das
interfaces criados.

Do trabalho de investigação realizado resultou a publicação e apresentação do artigo
científico: ”Smart Lysimeter with Crop and Environment Monitoring, Enhanced with Pest
and Crop Control”, na 4th IFIP International Internet of Things (IoT) Conference, em
Novembro de 2021.

Algumas figuras possuem texto em inglês pelo facto de terem sido incluídas no artigo
apresentado em conferência internacional [2].

1.3 Estrutura do Documento

A dissertação está organizada em cinco capítulos, incluindo o capítulo inicial de introdução
e o capítulo final das conclusões.

Capítulo 1 - Introdução

Neste capítulo é feito o enquadramento da dissertação, descreve como é feita a monito-
rização de culturas recorrendo ao paradigma IoT, apresenta os principais contributos da
dissertação e por último a estrutura do documento.

Capítulo 2 - Estudo da Arte

É feito o levantamento do estado da arte seguindo-se uma análise dos mais recentes traba-
lhos científicos sobre lisímetros, sistemas de aquisição de imagem para deteção de doenças
e pragas em plantas e sistemas para análise de colheitas.

Capítulo 3 - Arquitetura do Sistema Lisímetro

Apresenta a arquitetura proposta para o lisímetro baseada em IoT, detalhando a estrutura
geral do lisímetro nos seus diversos níveis e, por fim, a arquitetura de hardware do sistema.

4

1.3. Estrutura do Documento

Capítulo 4 - Implementação Experimental

Descreve a implementação experimental do lisímetro e apresenta as especificações requeri-
das para o protótipo. Depois é descrita a implementação física do protótipo experimental.
Esta implementarão é dividida em 4 partes: Módulo Lisímetro, Módulo Câmara, Módulo
de Computação na Nuvem, a estrutura de suporte e, por último, são apresentados os
aspetos experimentais.

Capítulo 5 - Conclusões

Apresenta as conclusões do trabalho desenvolvido e propostas para trabalhos futuros.

5

Capítulo 2

Estado da Arte

2.1 Introdução
O capítulo incide sobre o levantamento de lisímetros inteligentes, sistemas de aquisição de
imagens de plantações e sistemas de processamento de análise de colheitas.

Foram analisados diversos artigos publicados em revistas científicas em conferências, e
outros documentos provenientes de locais da Internet. A pesquisa de artigos científicos foi
dividida em três partes:

1. Pesquisa de artigos sobre lisímetros com abordagem IoT;

2. Pesquisa de artigos sobre sistemas de aquisição e processamento de imagem usados
na agricultura;

3. Pesquisa de artigos sobre sistema de análise de colheitas.

Quando é necessária uma estimativa precisa da ET, deve-se usar um lisímetro de pe-
sagem. Estes sistemas são usados para calibrar outros sistemas baseados em Machine
Learning (ML) para estimar a ET.

Num período de 10 anos verifica-se que houve grandes avanços nas técnicas de proces-
samento de imagem, nomeadamente a adoção de técnicas de DL Deep Learning do tipo
Convolutional Neural Network (CNN) em vez dos métodos convencionais, nomeadamente
de ML.

A evolução das redes neuronais, nomeadamente a Deep Convolutional Neural Network
(DCNN) , nos últimos cinco anos está a permitir criar sistemas mais precisos e exatos, e
com menor necessidade de ajustes. Prevemos que os métodos convencionais terão tendência
a desaparecer com o tempo e com a inovação tecnológica.

7

2. Estado da Arte

2.2 Lisímetros

Existem vários tipos de lisímetros, tendo em conta o objetivo em concreto a que se destinam,
dependendo essencialmente do clima, disponibilidade de materiais, tecnologia envolvida,
dimensões e custos envolvidos na construção. Os lisímetros podem ser essencialmente
divididos em duas grandes categorias: pesagem (mecânica, electrónica, hidráulica e de
flutuação), e não pesagem (volumétricos: drenagem e lençol freático). Geralmente são
classificados em quatro grupos: drenagem, pesagem, flutuante, e hidráulico [3].

Desde o primeiro lisímetro até há cerca de uma década atrás, os lisímetros eram na
maioria dos casos, usados por instituições de ensino e investigação, devido ao seu elevado
custo. No entanto, o aparecimento de novas tecnologias, assim como novos materiais, veio
permitir a construção de lisímetros de pesagem de alta tecnologia e de baixo custo. A
tecnologia IoT veio permitir uma melhor gestão das culturas devido à redução de custos e
aumento da eficiência, assim como o seu controlo automatizado. A IoT permite o acesso
à monitorização das culturas em tempo real e com os dados recolhidos é possível gerar
alertas precoces e atempados, e fornecer informação de apoio à decisão ao agricultor [4].

Um lisímetro de pesagem é um dispositivo normalmente constituído por dois vasos, um
para o solo com as plantas, outro para a recolha da água drenada. O cálculo da evapo-
transpiração é obtido pela relação entre a entrada de água (chuva, rega, e condensação) e
a água drenada (Figura 1.1).

Em [5] a ET das plantas no deserto é quantificada usando sensores de humidade simples
colocados a várias profundidades e sensores de pressão hídrica associados a um microcon-
trolador (Microcontroller Unit (MCU)) [6] para controlar a rega e para manter a humidade
do solo num determinado nível. Este lisímetro não recorre à pesagem de água.

Para quantificar a ET de grandes campos em [7], o sistema descrito combina dados de
sensorização remota, juntamente com dados meteorológicos e um lisímetro tradicional com
sensores de peso, tornando possível estimar a ET de grandes áreas de cultura.

Em [8] é apresentado o cálculo de uma estimativa de ET inteligente. Os autores empre-
gam uma rede neuronal difusa para estimar a ET de uma plantação em estufa a partir dos
dados de temperatura, humidade e pressão atmosférica. Após o treino da rede neuronal
e calibração do sistema com um lisímetro de pesagem local, a ET é estimada pela rede
neuronal.

Quando é necessário uma estimativa precisa da ET, deve-se recorrer a um lisímetro
de pesagem. Normalmente este é constituído por dois vasos: um contendo o solo com a
plantação e um segundo vaso que recolhe a água drenada a partir do primeiro vaso. Ao
medir e comparar o peso do vaso com o solo com o peso do vaso de drenagem, é feita uma

8

2.3. Aquisição de Imagem

estimativa da ET com precisão. Os solos possuem taxas de infiltração de água variáveis
consoante o seu tipo. No início, a taxa de infiltração é alta, mas à medida que o solo absorve
a água, esta taxa torna-se estável, e o uso de um lisímetro de pesagem permite abordar
ambas as situações com maior precisão. A utilização de vários sensores de humidade do
solo a diferentes profundidades permite a caracterização do perfil do movimento da água
em termos de profundidade [9]. No artigo [9], um balanço preciso da infiltração de água
é apresentado recorrendo a um lisímetro de pesagem de precisão. Da literatura conclui-se
que os lisímetros de pesagem apresentam uma melhor estimativa para a ET em termos de
precisão, comparado com as técnicas alternativas.

2.3 Aquisição de Imagem
Um levantamento do estado-da-arte, muito amplo, relativamente à utilização do proces-
samento de imagem na área da agricultura é apresentado em [10]. Onde não é abordado
apenas uma área especifica, mas uma abordagem completa e detalhada das possibilidades
do uso do processamento de imagem na agricultura, onde podemos destacar:

1. Deteção de plantas e frutos;

2. Apoio às colheitas, incluindo classificação de frutos, deteção de maturação, contagem
de frutas e previsão de rendimento;

3. Proteção da saúde de plantas e frutos e deteção de doenças, incluindo ervas daninhas,
insectos, deteção de deficiência;

4. Tipos de câmaras usadas no processamento de imagem na agricultura;

5. Sistema de orientação por visão por computador para veículos agrícolas;

6. Robôs agrícolas autónomos usando visão por computador.

No nosso estudo vamos apenas focar o ponto (3) Protecção da saúde de plantas e frutas
e deteção de doenças, incluindo ervas daninhas, insectos, deteção de deficiência.

Deteção de ervas daninhas Na deteção de ervas daninhas foram referenciadas diversas
abordagens, nomeadamente:

• Speed-ed Up Robust Features (SURF) [11] + Gaussian Mixture Modelling (GMM) [12];

• Make Intelligent Applications (MIA) [13];

9

2. Estado da Arte

• Principal Component Analysis (PCA) [14] + Artificial Neural Network (ANN) [15];

• emphSupport Vectors Machines (SVM) [16];

• DL com uma CNN.

Todos os métodos anteriores apresentam índices de precisão superiores a 60%, destacando-
se a precisão da CNN nos campos de cenouras com índices de precisão superiores a 99%.

Deteção de insectos Na deteção de insetos foram referenciadas apenas duas culturas
(uvas e morangos). Nas uvas foi possível detectar a ”Lobesia botrana” e o bicho da videira
com índices de precisão de 95.10% e 86.00% respectivamente. Nos morangos foi possível
detectar uma praga de insetos com um erro quadrático médio de MSE=0,471.

Deteção de doenças e deficiências Na deteção de doenças e deficiências nas plantas
foram referenciadas doze abordagens relativamente às culturas de café, trigo, soja, batata,
citrinos, pepino, maça e estufas com verduras. Recorrendo a métodos de processamento
de imagem mais recentes, o pior índice de precisão obtido (64.90%) é referente à deteção
de deficiência de nutrientes nas folhas de café.

Conclui-se que a deteção de doenças e deficiências não é uma tarefa fácil, a precisão
dos métodos é limitada, com valores inferiores a 90%. A maior dificuldade reside na
necessidade de descriminar a zona doente da saudável, e onde, por vezes a sobreposição
das folhas dificulta a tarefa.

A publicação [10] é um excelente guia para futuros trabalhos relacionados com pro-
cessamento de imagem na agricultura, ele aborda todas a áreas possíveis de intervenção.
Relativamente aos estudos referentes à utilização de métodos de ML e DL, são apresen-
tadas tabelas com os resultados obtidos. Com base nos resultados é possível saber qual a
melhor opção a tomar no caso da implementação de um sistema idêntico, e com os mesmos
objetivos dos apresentados.

Na referência [17] é feito um levantamento das técnicas atualmente usadas na área
de processamento de imagem, verificando quais são as técnicas mais adequadas a usar
na deteção de doenças em folhas ou frutos de plantas, assim como o modelo usado para
classificar doenças. O estudo tem como objectivo mostrar as várias etapas necessárias ao
processamento da imagem, nomeadamente as vantagens e desvantagens de cada técnica
usada, visando mostrar o actual estado da arte no campo do processamento de imagens
para a deteção e classificação de doenças.

10

2.3. Aquisição de Imagem

De acordo com este estudo, o processamento de imagens segue dois tipos de abordagens:
primeiro usando uma rede neural convolucional CNN [18], e o segundo usando métodos
convencionais.

CNN - Convolutional Neural Network
Para classificar as doenças nas plantas são geralmente usadas duas abordagens diferen-

tes:

• Aprendizagem a partir do zero (0);

• Transferência de aprendizagem.

A aprendizagem a partir do zero envia as imagens para uma série de camadas ”Convo-
lution” e de ”Pooling” sucessivamente até à camada ”Full connected””, esta última tem o
resultado da classificação.

A transferência de aprendizagem usa o conjunto de dados obtidos da aprendizagem
a partir do zero. O uso desta abordagem reduz o tempo de classificação e melhora o
desempenho do sistema.

As principais vantagens reportadas de uma CNN, comparado com métodos convencio-
nais, são:

• Aprende directamente com as imagens introduzidas;

• Não necessita fazer ajustes;

• O sistema pode ser usado para detectar várias doenças;

• Permite detectar doenças em diversas culturas.

A Figura 2.1 mostra os passos durante o processamento de uma imagem usando uma
CNN.

Figura 2.1: Passos usados numa CNN [17].

Devido às suas características esta abordagem é a mais usada pela maioria dos inves-
tigadores actualmente.

11

2. Estado da Arte

Métodos convencionais
O método convencional usa uma sequência de seis(6) passos para obter as características

das imagens das plantas:

1. Aquisição de imagem

2. Processamento de imagem (Redução de ruído, Redimensionamento, Remoção de
partes indesejada, Suavização, Ajuste do contraste e brilho);

3. Segmentação de imagem (Divisão da imagem em várias partes com as mesmas carac-
terísticas: OTSU [19], K-means [20], conversão de Red Green Blue (RGB) [21] para
HIV, e conversão de RGB para Hue, Saturation, Value (HSV) [22]);

4. Extracção de características (Cores, Formas, Contornos, Texturas, Técnicas: Global
Color Histogram (GCH) [23], Local Binary Pattern (LBP) [24], Color Coherence
Vectors (CCV) [25], Spatial Gray Level Dependence Matrices (SGLDM) [26])

5. Classificação (Análise de características - ANN, SVM, Naive Bayes Algorithm (NB) [27],
Decision Tree (DT) [28], Random Forest (RF) [29]);

6. Teste (Teste com uma amostra, Verificação de precisão).

A Figura 2.2 apresenta os diversos passos usados nos métodos convencionais de proces-
samento de imagem.

Figura 2.2: Passos usados no método convencional [17].

Conclui-se que a utilização de técnicas de processamento de imagem, para detectar e
classificar doenças em frutos e folhas de plantas, são uma boa solução para os agricultores.
É possível criar sistemas que fazem a deteção e classificação das doenças em tempo real e
podem enviar mensagens de alerta aos agricultores, e desta forma evitar perdas de rendi-
mento da colheita causadas pela propagação de doenças. O método convencional tem um
bom desempenho para lidar com um determinado tipo de planta ou fruto, mas precisa de

12

2.3. Aquisição de Imagem

muitos ajustes até obter uma boa precisão. Por outro lado a rede neuronal convolucional
com uma aprendizagem a partir do zero, apresenta uma melhor classificação mas necessita
de um maior numero de amostras, sobretudo quando há muitos dados.

Em [30] é usado o processamento de imagem para detectar automaticamente doenças
nas plantações de milho. A partir da imagem original captada pela câmara, no formato
RGB [21], foram convertidas noutros formatos, nomeadamente:

• Scale-Invariant Feature Transform (SIFT) [31];

• SURF;

• Histograms of Oriented Gradients (HOG) [32];

• Oriented FAST and Rotated BRIEF (ORB) [33].

Desta forma foi possível comparar o desempenho da combinação dos diversos formatos de
imagem com diferentes métodos de ML, nomeadamente: SVM; DT; RF; e NB.

Concluíram que o formato RGB com o método SVM obtém o melhor desempenho
(Figura 2.3), e que o método RF pode ser melhorado com um número de amostras maior
(Figura 2.4).

Figura 2.3: Comparações de desempenho dos métodos ML avaliados [30].

Em [34] é descrito um sistema para identificar plantas através do processamento de
imagem das nervuras foliares. Á semelhança de [30], foi usado os mesmos métodos de
ML. O sistema conseguiu reconhecer plantas com um a taxa de verdadeiros positivos
(True Positive Rate) (TPR)) de 84,29% e uma taxa de falsos negativos (False Negative
Rate (FNR)) de 15,71% [35]. É de referir a importância das condições de luz, assim como
a distância da câmara à folha, para fazer uma boa aprendizagem.

13

2. Estado da Arte

Figura 2.4: Comparações de desempenho de RF com diversos n.º de árvores [30].

Concluíram que para obter 70% de precisão, esta depende do pré-processamento da
imagem, e por sua vez este pré-processamento depende do hardware e software utilizado.

Embora este sistema não se destine a detectar doenças, ao ser implementado num
sistema que faça a deteção de doenças em plantas, permite verificar em tempo real se
estamos a analisar a planta correcta e não alguma planta invasora que poderá surgir na
plantação.

Em [36] é analisado um sistema para detectar doenças nas plantações de mandioca,
porque o rendimento dessas culturas é muito afectado por quatro doenças bem conhecidas:

• Cassava Mosaic Disease (CMD);

• Cassava Brown Streak Disease (CBSD);

• Cassava Bacterial Blight (CBB);

• Cassava green mite (CGM).

Das quatro doenças a CMD e CBSD aquelas que mais degradam o rendimento dos
agricultores na África Oriental e Central.

O aparecimento de doenças virais manifesta-se principalmente na deformação da cor e
forma da folhas. Para extrair essas características da imagem foi usado os métodos HOG,
SIFT, e SURF, tendo sido obtidos os melhores resultados com os métodos HOG e SIFT.

Para fazer a classificação das doenças foram usados os seguintes classificadores:

• Linear Support Vector Classifier (SVC) [37];

• K-Nearest Neighbour (KNN) [38];

14

2.3. Aquisição de Imagem

• Extremely Randomized Trees (ERT) [39].

Os testes de desempenho, mostraram que a precisão com método ORB obteve a melhor
precisão, superior a 99% (Figura 2.5).

Figura 2.5: Tabela comparativa de métodos e classificadores [36].

A Figura 2.6 apresenta a comparação dos histogramas das imagens de uma planta
saudável e de uma planta doente. A Figura 2.7 mostra os pontos de intercepção através
do método ORB.

Figura 2.6: Exemplo do histograma da imagem - Planta saudável vs Planta doente[36].

O sistema apresentado foi desenvolvido para fazer um diagnóstico das doenças das
plantações de mandioca baseado numa aplicação para Smartphone, de modo a que os agri-
cultores possam fazer uma análise rápida das suas plantações em locais remotos. Contudo,
este sistema pode ser implementado com um microcomputador do tipo Raspberry Pi[40]
munido de uma câmara de 8 MPx, com processamento de imagem local.

15

2. Estado da Arte

Figura 2.7: Pontos de intercepção com ORB[36].

Em [41] foi usada uma rede neuronal convolucional profunda (DCNN) [42] baseada na
arquitetura VGGnet16 [43] para detectar automaticamente doenças em folhas de plantas,
os modelos foram testados num PC e num Raspbery Pi[40].

Figura 2.8: Modelo da arquitetura de uma DCNN [41].

Para obter o melhor desempenho de uma DCNN é fundamental usar um grande con-
junto de dados. Este estudo recorreu a diferentes fontes de dados, nomeadamente, Internet,
dataset’s de acesso livre e imagens de telemóvel. Foram redimensionadas as resoluções das
imagens para 100×100 pixel, de modo a reduzir o tempo de aprendizagem.

Foram usados os seguintes optimizadores:

• Stochastic Gradient Descent (SGD) [44];

• AdaGrad [45];

• Root Mean Square Propagation (RMSP) [46];

16

2.3. Aquisição de Imagem

• Adadelta [47];

Os testes de validação no PC obtiveram uma precisão de 60% a 90%, com tempos de
execução de 0,27s a 0,30s. No Raspberry Pi a precisão variou entre os 70% a 90% com
tempos de execução 0,774s a 0,941s.

Deste modo conclui-se que o uso do modelo DCNN na agricultura é uma inovação
que melhora o desempenho do sistemas, possibilitando uma melhoria na qualidade dos
alimentos e, uma redução dos factores risco que afectam as colheitas. A parte mais critica
do modelo DCNN é o processo de aprendizagem e o ajuste do optimizador.

Conclui-se que o modelo funciona bem nos diferentes hardwares, com precisões idên-
ticas, apenas com tempos de execução diferentes, devido à capacidade computacional de
cada um.

Em [48] é feito um estudo sobre a deteção e reconhecimento precoce da doença da
ferrugem nas culturas de trigo. Para a deteção da doença foi usado o algoritmo Fuzzy
C-means Clustering (FCM) [49], o reconhecimento foi feito com base numa rede neuronal
artificial ANN [15], em 85% dos casos a identificação da doença foi bem sucedida.

O trigo pode ser infectado por 4 tipo de doenças consideradas ferrugem:

1. Oídio;

2. Mancha de fungos Septoria na folha;

3. Mancha bronzeada ou folha amarela;

4. Bolor de neve.

O processo de deteção de doença é feito em três fases:

1. Análise de imagens;

2. Extrator de características;

3. Classificador

Numa primeira fase é necessário fazer uma aprendizagem (OFFLINE PHASE). Com
base num conjunto de imagens de folhas de trigo doentes e normais, através do ”Anali-
sador de imagens” algumas das características são obtidos pelo ”Extractor”. Depois
o ”Classificador” é treinado, informando quais são as folhas normais e quais as doentes,
assim como o nível de infecção.

17

2. Estado da Arte

Na segunda fase (ONLINE PHASE) pode-se identificar uma doença através das carac-
terísticas obtidas pelo ”Extractor” e testadas pelo ”Classificador” se a folha é normal
ou doente, de acordo com as informações guardadas na fase de aprendizagem.

Figura 2.9: Arquitectura do sistema com ANN [48].

No estudo descrito foram recolhidas mais de 300 imagens de folhas de trigo numa plan-
tação, depois as mesmas foram classificadas de acordo com o nível de infecção. De seguida
foi treinada a rede neural artificial (ANN) com 20 imagens, quatro livres de doenças, as
restantes com doença com diferentes níveis de infecção. Depois da fase de treino concluída,
foram introduzidas 342 imagens na entrada da rede das quais 290 foram reconhecidas,
tendo uma precisão de 84.8%.

Concluiu-se que o objectivo proposto de criar um sistema capaz de identificar as doenças
nas folhas de trigo foi conseguido.

Assim, podemos concluir que, à semelhança das CNN, as ANN também produzem
resultados bastantes bons na deteção de doenças em plantas, como é o exemplo do trigo.

Em [50] é proposto um sistema para identificar plantas através do processamento de
imagem, designado por ”WTPlant- (What’s That Plant?), contudo recorreu ao DL pelo
facto de ter demonstrado ter excelentes resultados com processamento de imagem naturais.
Através de uma rede neural convolucional (CNN) é feito a aprendizagem por intermédio
do método MIT Scene Parsing. Os primeiros resultados experimentais permitiram detetar
a presença de plantas em 99.3% das imagens (17000 imagens naturais). Depois de um

18

2.3. Aquisição de Imagem

processo de segmentação e aprendizagem das CNNs foi obtido uma precisão de 61.87%
com a presença de plantas e flores misturadas.

Em [51] é proposto um sistema muito idêntico ao descrito em [50], baseado em ML. No
entanto, faz a aprendizagem da sua rede neuronal com quatro dataset’s diferentes:

1. Folio [52];

2. Swedish [53];

3. Flavia [54];

4. Leaf12 (tempo real).

A aprendizagem foi realizada recorrendo ao método convencional de DL, usando o
conjunto de dados referidos.

Figura 2.10: Métodos usados no estudo de [51].

Para o método convencional, a implementação foi feita em linguagem Python 1 com
ajuda do pacote OpenCV 2. A rede neuronal artificial foi implementada com ajuda da
biblioteca Keras 3 juntamente com o pacote Theano 4 no Backend.

Tendo-se concluido que relativamente aos dois métodos utilizados, a partir dos testes
experimentais, o método DL tem uma precisão mais alta em comparação com os métodos

1Python - Linguagem de programação de alto nível [55]
2OpenCV - Pacote de livrarias para processamento de imagem Open Source [56]
3Keras - Biblioteca Deep Learning para Python [57]
4Theano - Biblioteca Python para operações matemáticas multi-dimensionais [58]

19

2. Estado da Arte

convencionais em todos os conjuntos de dados. Em todos os casos, as previsões podem ser
melhoradas através dos aumento da quantidade e representatividade dos dados.

Embora o sistema não se destine a detectar nenhuma doença, à semelhança do sistema
implementado em [34], caso se trate de um sistema implementado com abordagem DL
permite verificar em tempo real se estamos a analisar a planta correcta e não alguma
planta invasora.

2.4 Análise de Colheitas

Um estudo muito completo sobre trabalhos já realizados relativamente à monitorização de
culturas usando a IoT é apresentado em [59]. Além de uma introdução sobre a IoT, são
analisados cerca de 38 artigos relacionados com o tema. Na maior parte dos trabalhos foram
usadas redes de sensores sem fios Wireless Sensor Network (WSN) [60], nomeadamente com
comunicações ZigBee (ZB) [61]. Estas redes de sensores sem fios permitiram monitorizar
temperaturas, humidades do solo e do ar entre outros parâmetros, e controlar a rega
das culturas. Noutros trabalhos foram usadas outras tecnologias, nomeadamente a Radio
Frequency Identification (RFID) [62], o General Packet Radio Services (GPRS) [63], e o
Wi-Fi [64].

É referenciado um artigo onde é usado uma câmara para deteção de pragas de insec-
tos [65], embora a arquitectura seja explanada, não é dada informação sobre as técnicas
de processamento de imagem usadas.

Em [66] é proposto um sistema com uma câmara de baixo custo, como alternativa na
observação do crescimento das culturas. Usa-se uma câmara para avaliar os índices vege-
tativos (ev-NDVI [67], ev-SR, e ev-CIgreen) das culturas. O estudo conclui que ev-VARI
funcionou melhor com o milho e o ev-CIgreen para a soja. O ev-VARI também foi o me-
lhor para estimar a biomassa das folhas verdes no milho e o NBRINIR na soja. Os indicies
vegetativos baseados em câmaras têm a possibilidade de estimar diversos parâmetros biofí-
sicos, sendo uma boa opção para uma elevada frequência de observações e em muitos locais
da plantação. Em todos os casos referenciados, a monitorização de culturas usando IoT
mostra ser uma forma fácil e eficiente de aumentar a produtividade das culturas. Contudo,
neste estudo não é mencionado como é feito o tratamento dos dados dos diversos sensores,
nomeadamente se com a utilização de algoritmos do tipo ML - Machine Learning [68] e/ou
DL - Deep Learnig [69].

20

2.5. Conclusão

2.5 Conclusão
A análise das publicações técnicas e científicas sobre o assunto, permite retirar algumas
conclusões.

Quando necessitamos de uma estimativa precisa da ET, devemos usar um lisímetro de
pesagem. Os sistemas que usam ML para estimar a ET recorrem a lisímetros de pesagem
para a sua calibração.

O conjunção de dados proveniente dos sensores de lisímetros inteligentes com proces-
samento de imagem da câmara numa única rede neuronal convolucional irá permitir mais
precisão e fiabilidade na deteção e prevenção de doenças e pragas em plantas, assim como
um melhor estudo das plantas.

Nos diversos estudos apresentados a precisão dos sistemas baseados no método de redes
neuronais convolucionais CNN geralmente apresentam uma maior precisão.

A evolução das redes neuronais, nomeadamente a DCNN , nos últimos cinco anos
permitem a criação de sistemas mais precisos, e com menor necessidade de ajustes. Assim,
prevemos que os métodos convencionais terão tendência a desaparecer no futuro.

Alguns estudos permitem concluir que é possível desenvolver sistemas para deteção de
doenças e pragas em plantas, recorrendo a hardware de baixo custo.

É muito difícil criar um sistema genérico para deteção de doenças em plantas inde-
pendente do seu tipo. Para se obter bons níveis de precisão e rapidez devemos ajustar os
sistemas para cada planta e doença especifica.

21

Capítulo 3

Arquitetura do Lisímetro

Para entender melhor a arquitetura proposta começamos por apresentar a estrutura física
do lisímetro, que está ilustrada na Figura 3.1. O lisímetro é constituído por três recipientes,
ou vasos, distintos. O vaso superior contém o solo com as plantas e é dotado de diversos
sensores: temperatura e humidade do solo, em três profundidades distintas, assim como
um conjunto de células de carga para medir o seu peso. O recipiente intermédio, que vai
conter a água drenada do vaso superior, é dotado de uma célula de carga para quantificar
o peso da água drenada, e uma válvula para drenar a água de em intervalos de tempo pré-
definido para o vaso inferior após a avaliação do seu peso. O vaso inferior serve para reter a
água drenada para eventuais análises químicas e físicas adicionais, como por exemplo para
o estudo da percolação. A relação dos pesos dos vasos superior e intermédio permitem o
cálculo da ET.

3.1 Estrutura Geral do Lisímetro

A arquitetura do lisímetro é projetada com recurso a tecnologias associadas à Internet
das Coisas (IoT) atualmente disponíveis, nomeadamente: sensores de baixo custo, micro-
controladores de baixo consumo de energia e comunicações sem fios. Um dos objetivos do
projeto consiste em construir um sistema de baixo custo e elevado desempenho seguindo o
paradigma IoT.

A Figura 3.2 apresenta um diagrama em camadas da arquitetura do sistema, composto
por três partes:

• Camada física - responsável pela aquisição e processamento inicial dos dados pro-
venientes dos sensores e posterior envio para a camada nuvem;

23

3. Arquitetura do Lisímetro

Figura 3.1: Estrutura física do lisímetro [2].

• Camada nuvem - responsável pela receção, o armazenamento e a análise dos dados,
gerando avisos relacionados com a cultura e com o controle de pragas;

• Camada aplicação - disponibiliza as aplicações para os diferentes utilizadores de
acordo com suas funções.

3.1.1 Camada Física

Na parte inferior da camada física estão os sensores que medem os parâmetros do solo e
do ambiente, assim como a câmara que captura imagens da planta. No solo da cultura é
medida a temperatura e a humidade em três profundidades diferentes tal como o peso do
vaso. Toda a água drenada do solo da cultura que fica retida no segundo vaso é pesada, e
depois é trespassada para um terceiro vaso através de uma válvula. A pesagem periódica
do solo e da água drenada permitem o cálculo da ET. A temperatura, a humidade e a
luminosidade ambiente são medidas para obter informação do meio onde está a cultura. Os
sensores estão ligados a um MCU [6], de baixo consumo de energia, que recebe os dados, faz
um pré-processamento dos mesmos, formatando-os para serem enviados para a camada

24

3.1. Estrutura Geral do Lisímetro

Aquisição de
dados

Processamento

Comunicação
do Nó

Sensores
Peso

- Ambiente
- ET
- Solo
- Nível da bateria
- Nível do sinal rádio

- Protocolos
- Tecnologia

- Formatação de dados
- Reconhecimento de padrões
- Intervalo entre aquisições

Módulo Lisímetro

Comunicação
Web

Coleção de
dados

Análise de
Dados

- Reconhecimento de padrões
- Previsão de eventos
- Disparo de alarmes

Processamento na nuvem

Camada de Aplicação

Visualização Controlo
- Dados dos sensores
- Crescimento da planta
- Alarmes (doenças, pragas)

- Configurações
- Ajuste dos alarmes

Fluxo de dados

Camada Física

Aquisição de
dados

Processamento

Comunicação
do Nó

Sensor Câmara

- Câmera de imagem
- Nível de bateria
- Nível do sinal rádio

- Protocolos
- Tecnologia

- Pré-processamento de imagem
- Reconhecimento de padrões
- Redução de dados
- Intervalo entre aquisições

Módulo Câmara

Sensores

Ambiente
Sensores

Solo

Cultura

CenaT(°C), H(%)

W
(g)

T(°C), H(%), L(lx)

Ambiente

a

f g

h

i

o

n

m

d e

b
c

j k
l

Figura 3.2: Arquitetura do sistema de um lisímetro com aquisição de imagens [2].

25

3. Arquitetura do Lisímetro

nuvem através de um System on Chip (SoC) [70] com comunicações sem fios integrado.
Os dados são enviados para a camada nuvem em intervalos de tempo pré-definidos que
podem ser programados.

Após o envio dos dados o MCU entra em modo de poupança de energia (Low Power
Mode (LPM) [71]). Todos os sub-circuitos (SoC, Sensores, Servo-motor) são desligados e
neste modo o consumo de energia é muito baixo, o que permite aumentar significativamente
a autonomia da bateria. Em LPM o timer do MCU continua a funcionar, e decorrido o
intervalo de tempo pré-definido para nova leitura dos sensores, o timer vai ativar todo o
sistema e um novo ciclo de leituras é iniciado. Juntamente com os dados dos sensores é
enviado ainda: a tensão da bateria, para avaliar o seu estado de carga; o nível de sinal
rádio das telecomunicações, para obter a qualidade de ligação de dados; um timestamp,
com a informação de data e hora da leitura dos dados, que é obtido através de servidor de
tempo na Internet (Network Time Protocol (NTP) [72]).

A camada física usa uma câmara de alta resolução para a análise da saúde e cres-
cimento da planta e controlo de possíveis pragas. As imagens adquiridas são processadas
localmente, para redução de dados, e são posteriormente enviadas para a camada nuvem.
A câmara está ligada a um micro computador (SBC [73]), que faz o pré-processamento das
imagens e envia os dados através dos seus recursos de comunicações para a camada nu-
vem.

Não sendo necessário capturar imagens com a mesma frequência dos restantes sensores,
dado que o crescimento das plantas é lento, é suficiente a aquisição de uma a três imagens
por dia. Um SBC consome em média cerca de 5Wh e se estiver constantemente ligado há
um consumo de energia diário muito elevado para um sistema IoT, que apenas trabalha
alguns minutos por dia. O problema é solucionado com o uso de um MCU com LPM, que
desliga todos os sub-circuitos (a câmara e o SBC) quando não está a ser feita a aquisição,
processamento ou envio dos dados. O timer do MCU é programado para alimentar os
sub-circuitos de acordo com o horário escolhido para aquisição das imagens.

Juntamente com as imagens também são enviados para a camada nuvem outros dados
importantes para saber o estado do sistema, nomeadamente: a tensão da bateria, o nível
de sinal rádio, e um timestamp, à semelhança do que acontece no módulo lisímetro.

3.1.2 Camada na Nuvem

No nível intermédio situa-se a camada nuvem, que é responsável pela receção e pro-
cessamento dos dados provenientes dos diversos módulos: módulos lisímetros e módulos
câmaras da camada física. A camada nuvem disponibiliza os seguintes serviços:

26

3.1. Estrutura Geral do Lisímetro

a) Protocolo de comunicações - estabelece a comunicação dos dispositivos com a camada
nuvem.

b) Sistema de gestão de base de dados - armazenar todos os dados provenientes dos dis-
positivos;

c) Serviços de processamento de dados - reconhecimento de padrões através de Machine
Learning ML, para a predição de eventos e geração de alarmes;

d) Servidor WEB [74] - disponibiliza à camada aplicação o acesso aos dados, configuração
e gestão do sistema.

Como já referido, os dispositivos da camada física devem ser eficientes do ponto de vista
energético, sendo que uma parte da energia é despendida para a transmissão de dados. A
transmissão de dados sem fios aumenta o consumo de energia comparativamente a outros
tipos de comunicações. Uma forma de reduzir o consumo de energia, será reduzir o tempo
necessário para a transmissão dos dados, e para isso devem ser escolhidos os protocolos
mais adequados. Para reduzir energia, os dados dos sensores de um dispositivo devem ser
enviados de uma só vez, usando um protocolo de comunicações leve, tal como o Constrained
Application Protocol (CoAP) [75] ou o Message Queuing Telemetry Transport (MQTT) [76].

Após a receção dos dados, estes são guardados numa base de dados para posterior
consulta e análise. Os dispositivos IoT podem gerar um enorme volume de dados. O
módulo lisímetro está programado para obter dados dos sensores de 10 em 10 minutos, o
que corresponde a 6 leituras por hora, perfazendo um total de 144 leituras diárias e 52560
leituras anuais. Para armazenar este grande volume de informação, é recomendado o uso
de base de dados não relacional, nomeadamente do tipo Not only SQL (NoSQL) [77]. Este
tipo de bases de dados orientadas a documentos estão preparadas para gerir um grande
volume de dados, com uma grande variedade, velocidade de acesso elevada, fiabilidade e
valor. Para garantir a escalabilidade é necessário definir desde o início uma base de dados
com as características referidas.

Os dados guardados na base de dados, juntamente com as imagens capturadas, são
processados com recurso a técnicas de Machine Learning ML. Este processamento permite
a predição de eventos e gerar avisos sempre que se preveja que algo não esteja bem com a
cultura. Através da análise dos dados dos sensores do módulo lisímetro é possível prever o
aparecimento de determinadas doenças, tais como por exemplo o míldio e o oídio. A análise
das imagens provenientes do módulo câmara permitem avaliar o crescimento saudável da
planta e ainda detetar doenças e possíveis pragas, gerando avisos para o agricultor.

27

3. Arquitetura do Lisímetro

O servidor WEB disponibiliza um serviço de acesso à informação dos lisímetros de
uma forma transversal. O acesso pode ser feito das mais diversas plataformas indepen-
dentemente do seu sistema operativo. A configuração e gestão do sistema também é feita
através desta plataforma WEB, nomeadamente: gestão de utilizadores, parametrização do
reconhecimento de padrões, configuração de alarmes e avisos, etc..

3.1.3 Camada de Aplicação

No topo do diagrama temos a camada aplicação que fornece diversos serviços aos utili-
zadores finais, tais como a configuração do sistema, a visualização dos dados, os resultados
das análises de dados, configuração e exibição de alarmes, etc. Um dado utilizador acede
aos dados em função das suas funções/competências, sendo criados grupos de utilizado-
res com as permissões bem definidas. Podendo ter nomeadamente, os seguintes grupos:
Agricultores, Técnicos Agrícolas, Técnicos de hardware e Técnicos de ML.

3.2 Arquitetura do Hardware

A Figura 3.3 representa a arquitetura de hardware do sistema com base no modelo descrito
atrás. Neste diagrama pode-se ver a interligação entre os diversos componentes físicos, tal
como o fluxo e tipo de sinal. A Tabela 3.1 lista os acrónimos utilizados no diagrama da
Figura 3.3.

Tabela 3.1: Acrónimos do hardware do sistema

Description Description

MCU Micro-controlador SBC Micro-computador
SoC Sistema num C.I. PS Fonte de alimentação
ATS Sensor Temperatura Ambiente AHS Sensor Humidade Ambiente
ALS Sensor Luz Ambiente STS Sensor Temperatura Solo
SMS Sensor Humidade Solo SWS Sensor Peso Solo
DWS Sensor Água Drenada BVS Sensor Tensão Bateria
CS Sensor de Imagem SM Servo Motor válvula
Data Dados PW Energia
Ctrl Sinal de Controlo

Com base no diagrama da Figura: 3.3 é possível escolher os componentes eletrónicos
no mercado, de forma a atender às especificações pretendidas para o lisímetro.

28

3.3. Conclusão

STS 3

AHS

MCU

ATS

ALS

STS 2

STS 1

SMS 3

SMS 2

SMS 1

DWS

SWS

SoC
WiFiD

D

Serviços na
Nuvem

Outros dispositivos

Dispositivos móveis
PS

MCU

SBC

D

D

CS

PS
PW

D

PW

PW

Módulo Câmara

Módulo Lisímetro

SMPWM

PW

PW

Ctrl

Ctrl

Cena

T(°C)

W(g)

Ambiente

Cultura

H(%)

L(lx)

T(°C)

T(°C)

T(°C)

H(%)

H(%)

H(%)

W(g)

D

D

D

D

D

D

A

A

A

D

D

Figura 3.3: Arquitetura do hardware do sistema [2].

3.3 Conclusão

A arquitetura proposta é o ponto de partida para o desenvolvimento e construção de um
protótipo funcional de um lisímetro. A abordagem IoT permite uma redução de custos,
elevado desempenho, escalabilidade, eficiência energética, disponibilidade em tempo real
dos dados, bem como uma análise autónoma e automática dos mesmos.

O facto dos módulos lisímetro e câmara estarem grande parte do tempo em LPM, torna-
os eficientes do ponto de vista energético, e podem trabalhar em condições de temperaturas
extremas.

A análise de dados através de técnicas de DL necessita de grandes quantidades de
amostras para terem um bom desempenho. A centralização dos dados provenientes de
diversos lisímetros, pode gerar de uma forma rápida um grande conjunto de dados, o que

29

3. Arquitetura do Lisímetro

permite obter uma boa precisão comparado com outros sistemas.
Para obter bons resultados é importante que os agricultores possam interagir com

o sistema, registando na plataforma a sua análise da cultura sempre que sejam feitas
visitas. Este procedimento permite a calibração do sistema e aumento do seu constante
desempenho.

Esta arquitetura permite a monitorização permanente com o consequente aumento da
produtividade das culturas, e a redução do consumo de água, porque é possível determinar
apenas a quantidade necessária de água que determinada plantação precisa.

30

Capítulo 4

Implementação Experimental

Neste capitulo é descrita a implementação física do protótipo experimental do lisímetro.
Com base nas especificações pretendidas, é feita a escolha de componentes para o protótipo.

4.1 Introdução
Para implementar a arquitetura descrita no capitulo anterior, desenvolvemos um protótipo
funcional o qual é composto por 4 partes:

1. Módulo Lisímetro;

2. Módulo Câmara;

3. Módulo Computacional;

4. Estrutura de Suporte.

Os componentes que compõem o sistema foram escolhidos atendendo às especificações
pretendidas para o lisímetro. A Tabela 4.1 apresenta a especificações pretendidas para o
nosso protótipo.

4.2 Módulo Lisímetro
A estrutura de hardware do módulo do lisímetro é apresentada na Figura 4.1. A Ta-
bela 4.2 apresenta a legenda dos componentes usados para implementação, incluindo as
especificações mais importantes. O diagrama contem representadas as interligações entre
os dispositivos.

31

4. Implementação Experimental

Tabela 4.1: Especificações/requisitos pretendidas para o protótipo.

Descrição Especificação/Requisito

Módulo Lisímetro
Microcontrolador Baixo consumo de energia
Comunicações Wi-Fi
Sensor de Temperatura Ambiente -10ºC:+50ºC, ±1ºC
Sensor de Humidade Ambiente 0–100% RH, ±5%
Sensor de Luz Ambiente Luz visível e IR
Sensor de Temperatura do Solo -10ºC:+50ºC, ±1ºC
Sensor de Humidade do Solo 0–100% RH, ±10%
Sensor de Peso do Solo Erro < ±100gr
Sensor de Peso da Água Drenada Erro < ±10gr
Servomotor Torque > 2,5Kg/cm
Alimentação Bateria + Painel solar
Módulo Câmara
Sensor de Imagem Resolução de imagem > 4Mpx
Computador numa Placa CPU ARM, 2MB RAM, CSI, GPIO
Microcontrolador Baixo consumo de energia
Alimentação Bateria + Painel solar
Módulo Computação na Nuvem
Servidor Virtual e Open Source
Instalação de serviços Containers
Protocolo de comunicação Publicação / Subscrição
Base de dados Não relacional
Processamento de dados Machine Learning
Envio de imagens Open SFTP
Servidor WEB Open Source
Estrutura de Suporte
Estrutura Metálica, pintura anti-corrosão

4.2.1 Escolha de componentes

Para a realização do protótipo procurou-se no mercado componentes com as especificações
pretendidas, com o objetivo de criar um protótipo recorrendo às mais recentes tecnologias,
e de elevada precisão e com custos controlados. A seguir apresentamos a descrição e
justificação para a escolha de cada componente.

32

4.2. Módulo Lisímetro

LMP MCU

ATS AHS

SWS

A3
A4
A5
D3

D0

D5
D6

D4

D1
D2

DWS

ADC

+3,3 VDC

A6

D7

Botão
multifunções

D9

D8
PWM

+4 VDC

ALS

STS 1

STS 2

STS 3

SMS 1

SMS 2

SMS 1

Vaso do solo

Vaso da água
drenada

Vaso da água
residual

SM

+

-

SoC

+3,3 VDC

I2C
UART

SLBCCBT

PSW DCC2

DCC1

+3,3V – SoC + Sensores

+3,3V - MCU

Wi-Fi

+4 VDC

Figura 4.1: Diagrama de blocos do hardware do módulo lisímetro [2].

MCU - Microcontrolador

Para controlar o módulo foi escolhido o MCU MSP430G2553 1 devido ao seu baixo consumo
de energia e custo. Este MCU dispõe de portas analógicas e digitais necessárias para ligar
os diversos sensores pretendidos. Possui um barramento (Inter-Integrated Circuit (I2C))
que permite interligar os sensores com essa tecnologia de comunicação, e uma interface
série (Universal Asynchronous Receiver-Transmitter (UART)) necessária para comunicar
com o SoC. No diagrama da Figura 4.1 o MCU está identificado com as portas usadas

1MSP430G2553 - Especificações: https://www.ti.com/product/MSP430G2553

33

https://www.ti.com/product/MSP430G2553

4. Implementação Experimental

Tabela 4.2: Componentes de hardware do módulo lisímetro.

Descrição Modelo Especificações

MCU Microcontrolador MSP430G2553 16 MHz, 16KB/512B, LPM
SoC Sistema num Chip ESP8266-01 Wi-Fi, 3.3VDC
ATS Sensor Temperatura Ambiente SHT30 (I2C) -40ºC:+80ºC, ±0.3ºC
AHS Sensor Humidade Ambiente SHT30 (I2C) 0–100% RH, ±2.0%
ALS Sensor Luz Ambiente TSL2561 (I2C) Visível IR
STS Sensor Temperatura do Solo DS18B20 (1Wire) -10ºC:+85ºC, ±0.5ºC
SMS Sensor Humidade do Solo CSMS Sensor Capacitivo Grove
SWS Sensor Peso do Solo HX711 4 células de 1/2 ponte
DWS Sensor Peso da Água Drenada HX711 1 célula ponte Wheatstone
BVS Sensor Tensão da Bateria Resistivo Divisor tensão resistivo
SM Servomotor HS422 (PWM) 180º, 3.3Kg/cm
SL Painel Solar Fotovoltaico FAL09004 5VDC, 1W, 110×60mm
BCC Controlador Carga da Bateria TP4056 1A, 1×BAT Li-Ion
BT Bateria Li-Ion INR18650-35E 3.6V, 3500mAh, Samsung
PSW Interruptor de potência DMP2022LSS -10A, P-MOSFET
DCC1 Conversor DC/DC MCU MCP1700-3302 3.3V, 250mA, LDO
DCC2 Conversor DC/DC MCP1700-3302 3.3V, 250mA, LDO

para interligação com os diversos tipos de sensores. A Figura 4.2 apresenta a estrutura
interna do MSP430G2553, com os diversos módulos periféricos realçados.

SoC - Sistema num Chip

Como a rede sem fios escolhida para o protótipo foi a tecnologia Wireless Local Area
Network (WLAN) [79], o módulo WLAN ESP-01 2 com o SoC ESP8266 3 foi o selecionado,
devido às suas especificações técnicas. É um módulo de reduzidas dimensões, compatível
com as normas de redes sem fios IEEE 802.11b/g/n, com um Central Processing Unit
(CPU) 32bits com uma frequência de 160MHz, uma porta de comunicação UART, e um
consumo médio de 71mA, suportando uma tensão de alimentação entre 3,0V e 3,6V. A
Figura 4.3, mostra uma imagem do módulo ESP-01.

2ESP-01 - Especificações: https://docs.ai-thinker.com/_media/esp8266/docs/esp-01_
product_specification_en.pdf

3ESP8266 - Especificações: https://www.espressif.com/en/products/socs/esp8266

34

https://docs.ai-thinker.com/_media/esp8266/docs/esp-01_product_specification_en.pdf
https://docs.ai-thinker.com/_media/esp8266/docs/esp-01_product_specification_en.pdf
https://www.espressif.com/en/products/socs/esp8266

4.2. Módulo Lisímetro

Figura 4.2: Estrutura interna do MCU MSP430G2553 [78].

Figura 4.3: Módulo WLAN ESP-01 com SoC ESP8266 [80].

ATS/AHS - Sensor de Temperatura e Humidade Ambiente

Para medição da temperatura e humidade do ar ambiente foi usado um módulo com o
sensor SHT30 4, desenvolvido pela Sensirion. A versão usada recorre à interface I2C
para as comunicações com o MCU. Este sensor é uma referência na indústria devido à sua
elevada precisão e baixo custo. Este sensor tem uma precisão de ±0.3ºC para temperaturas
de -40ºC a +80ºC, e uma uma precisão de ±2.0% para valores de humidade relativa entre
0 e 100%. A Figura 4.4 apresenta o módulo com o sensor SHT30.

4SHT30 - Especificações no URL: https://www.sensirion.com/fileadmin/user_upload/
customers/sensirion/Dokumente/2_Humidity_Sensors/Datasheets/Sensirion_Humidity_Sensors_
SHT3x_Datasheet_digital.pdf

35

https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/Datasheets/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital.pdf
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/Datasheets/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital.pdf
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/Datasheets/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital.pdf

4. Implementação Experimental

Figura 4.4: Módulo com sensor de temperatura e humidade ambiente SHT30 [81].

Para a sua instalação no exterior, o módulo foi instalado numa caixa plástica, a qual foi
perfurada de forma permitir a circulação o ar ambiente, e ao mesmo tempo, não permitir
a entrada da água da chuva.

ALS - Sensor de Luminosidade

Para medir a intensidade da luminosidade ambiente é usado um módulo com o sensor
TSL2561 5, desenvolvido pela AMS e usa a interface I2C. Este dispositivo possui interna-
mente dois sensores, o primeiro mede a intensidade da luz visível com a luz infravermelha
(IR) e o segundo apenas mede a intensidade da luz IR. A saída digital ligada a um MCU
e usando uma função de conversão permite obter o valor da iluminação em lux idêntica à
resposta do olho humano. A Figura 4.5 apresenta o módulo usado no protótipo.

Figura 4.5: Módulo com Sensor de Luminosidade TSL2561 [82].

Este módulo está instalado na mesma caixa com o módulo sensor SHT30. Ambos os
sensores usam o protocolo I2C permitindo, assim, usar a mesma cablagem para ligação ao
MCU.

5TSL5261 - Especificações: https://ams.com/documents/20143/36005/TSL2561_DS000110_3-00.
pdf/18a41097-2035-4333-c70e-bfa544c0a98b

36

https://ams.com/documents/20143/36005/TSL2561_DS000110_3-00.pdf/18a41097-2035-4333-c70e-bfa544c0a98b
https://ams.com/documents/20143/36005/TSL2561_DS000110_3-00.pdf/18a41097-2035-4333-c70e-bfa544c0a98b

4.2. Módulo Lisímetro

STS - Sensor de Temperatura do Solo

O vaso do solo está equipado com um conjunto de sensores de humidade e temperatura a di-
ferentes profundidades. A temperatura do solo é medida recorrendo a sensores DS18B20 6,
da Maxim Integrated, com tecnologia de comunicação OneWire [83], que permitem medir
temperaturas entre -10ºC e +85ºC com uma precisão de ±0,5ºC. Estes 3 sensores estão
ligados em paralelo a uma porta digital bi-direcional do MCU. A Figura 4.6 apresenta
uma imagem do sensor de temperatura, que é selado de modo a ser à prova de água, usado
na realização experimental.

Figura 4.6: Sensor de temperatura DS18B20 á prova de água [84].

A instalação destes sensores no vaso é efetuada através de bucins PG7, de modo a
garantir a estanquidade do vaso.

SMS - Sensor de Humidade do Solo

A humidade do solo é medida com sensores capacitivos resistentes à corrosão, produzidos
pela Seeed Grove 7. O nível de humidade é medida em função da alteração da capacidade do
dialétrico da sonda capacitiva do sensor. Como a sonda do sensor não tem partes metálicas
expostas, é mais resistente à corrosão, e mantendo a estabilidade das leituras por muito
mais tempo.

As saídas dos sensores são ligadas a portas analógicas do MCU, cujo conversor Analog
to Digital Converter (ADC) tem uma resolução de 10 bits. Estes sensores necessitam de
uma calibração prévia para ajustar a percentagem de humidade medida ao tipo de solo.

A electrónica do sensor foi encapsulado numa caixa com certificação IP65 de modo a
assegurar o correto funcionamento em ambiente exterior e manter a estanquidade do vaso.

6DS18B20 - Especificações: https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
7CSMS - Especificações: https://files.seeedstudio.com/wiki/Grove-Capacitive_Moisture_

Sensor_Corrosion_Resistant/res/soil_sensor.pdf

37

https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
https://files.seeedstudio.com/wiki/Grove-Capacitive_Moisture_Sensor_Corrosion_Resistant/res/soil_sensor.pdf
https://files.seeedstudio.com/wiki/Grove-Capacitive_Moisture_Sensor_Corrosion_Resistant/res/soil_sensor.pdf

4. Implementação Experimental

Figura 4.7: Sensor Capacitivo para Medição da Humidade do Solo [85].

SWS - Sensor de Peso do Solo

O vaso do solo é pesado recorrendo a 4 células de carga de 50Kg. Este conjunto de células
permite usar vasos com solo e plantas até 200Kg de peso com um erro inferior a ±50g . A
Figura 4.8 mostra a imagem de uma das células de carga usadas.

Figura 4.8: Célula de carga de 50Kg com 1/2 ponte de Wheatstone [86].

Cada célula dispõe de 1/2 ponte de Wheatstone. Recorrendo a um circuito elétrico com
o esquema da Figura 4.9 é possível obter o equivalente eléctrico de uma ponte completa
Wheatstone através de 4 células de 1/2 ponte.

Este conjunto de células está ligado a um circuito integrado (Integrated Circuit (IC))
que contém internamente um amplificador e um conversor analógico-digital(ADC) com a
designação HX711 8. Este IC comunica com o MCU recorrendo a um protocolo proprietário,
usando 2 portas (Data e Clock). Este IC HX711 tem 2 canais, o que permite ligar 2 células

8HX711 - Especificações: https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_
english.pdf

38

https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf
https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf

4.2. Módulo Lisímetro

Figura 4.9: Esquema de ligação de 4 células de 1/2 ponte de Wheatstone.

de carga, o ADC tem uma resolução de 24bits. A Figura 4.10 apresenta o diagrama de
blocos interno do HX711. A Figura 4.11 apresenta o módulo HX711 utilizado.

Figura 4.10: Diagrama de blocos do CI HX711 [87].

O módulo HX711 foi encapsulado numa caixa de plástico estanque com certificação
IP65, para assegurar o seu correto funcionamento em ambiente exterior. A caixa com
o módulo HX711 foi instalada o mais próximo das células de modo a reduzir o máximo
possível interferências eletromagnéticas.

39

4. Implementação Experimental

Figura 4.11: Módulo com CI HX711 [88].

DWS - Célula de Carga da Água Drenada

O vaso da água drenada é pesado com uma célula de carga de 10Kg 9 com ponte de
Wheatstone. O erro da célula de carga é inferior a 5g. A Figura 4.12 apresenta uma
imagem da célula utilizada. Esta célula está ligada a um outro canal do módulo HX711 já
descrito.

Figura 4.12: Célula de carga de 10Kg [89].

9Célula de carga 10Kg - Especificações: https://cdn.sparkfun.com/datasheets/Sensors/
ForceFlex/TAL220M4M5Update.pdf

40

https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/TAL220M4M5Update.pdf
https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/TAL220M4M5Update.pdf

4.2. Módulo Lisímetro

BVS - Sensor da Tensão da Bateria

O estado da carga da bateria é proporcional à tensão dos seus terminais. Para fazer a
leitura da tensão da bateria é usado o ADC interno do MCU. O ADC foi programado para
usar como referência a referência interna de 2500mV, o que implica que a tensão máxima
de entrada na porta analógica não pode exceder esse valor. Para obter uma amostra
proporcional da tensão da bateria é usado um divisor resistivo por intermédio de duas
resistências (R4 e R5). A Figura 4.13 apresenta o divisor de tensão implementado, com
um condensador para estabilizar a tensão medida.

A tensão máxima da bateria totalmente carregada é de 4200mV, com um fator de divisão
de 2, a tensão à entrada da porta do ADC é de 2100mV. Analisando a malha resistiva, a
tensão à saída do divisor resistivo é dada por: Vsens =

R5
R4+R5

× Vbateria. Recorrendo a duas
resistências de 10kΩ , obtemos o divisor pretendido com uma corrente na malha inferior a
210µA.

Figura 4.13: Medição da Tensão da Bateria do Lisímetro [II.1].

SM - Servomotor

Para fazer a abertura da passagem da água drenada após a sua pesagem, é usado um
servomotor de radio-modelismo, nomeadamente foi escolhido o modelo HS-422 10 da HiTec.
Este servomotor possui um torque mínimo de 3.3Kg/cm, e uma rotação de 180º que são
suficientes para acionar a válvula de descarga do vaso da água drenada. A Figura 4.14
apresenta a imagem deste servomotor.

10HS-422 - Especificações: https://hitecrcd.com/products/servos/analog/sport-2/hs-422/
product

41

https://hitecrcd.com/products/servos/analog/sport-2/hs-422/product
https://hitecrcd.com/products/servos/analog/sport-2/hs-422/product

4. Implementação Experimental

Figura 4.14: Servomotor HS-422 para abertura de válvula do vaso da água drenada [90].

SL - Painel Solar Fotovoltaico

Foi escolhido o sol como fonte de energia do sistema. Atendendo ao consumo de energia
do nosso módulo foi escolhido um painel solar mono-cristalino de 5V, com uma potência
máxima de 1W, com capacidade para fornecer a energia necessária para carregar a bateria.
A Figura 4.15 apresenta a imagem do painel solar.

Figura 4.15: Painel solar de 5V 1W [91].

BCC - Controlador de Carga da Bateria

De modo a carregar adequadamente a bateria, é necessário um controlador de carga, tendo
sido escolhido um módulo com um controlador dedicado para carregar baterias de Li-Ion
de apenas uma célula, o módulo CI TP4056 11. Este módulo permite carregar com uma
corrente máxima de 1A, com tensões de entrada de 4, 5V DC a 5, 5V DC. A Figura 4.16
apresenta a imagem do módulo escolhido.

11TP4056 - Especificações: http://www.tp4056.com/d/tp4056.pdf

42

http://www.tp4056.com/d/tp4056.pdf

4.2. Módulo Lisímetro

Figura 4.16: Módulo Controlador de Carga de Bateria com TP4056 [92].

BT - Bateria

Para que o sistema funcione independente das condições meteorológicas, é importante que
nunca falte energia ao sistema. Para assegurar o fornecimento ininterrupto de energia é
usada uma bateria de iões de lítio (Li-Ion)[93] com capacidade suficiente para manter o
sistema em funcionamento mesmo com vários dias sem presença de sol. A Figura 4.17
apresenta a imagem da bateria Samsung INR18650-35E12, com uma tensão nominal de
3, 6V e uma capacidade de 3500mAh, usada no protótipo.

Figura 4.17: Bateria de iões de lítio INR18650-35E da Samsung SDI [94].

PSW - Interruptor de potência

Pretende-se fazer leituras dos sensores com intervalos de 10 minutos, pelo que não é ne-
cessário que todo o sistema esteja a ser alimentado em continuo, apenas o MCU necessita
de ser alimentado sem interrupções. Para se poupar a energia da bateria os sensores e o
servomotor apenas são alimentados quando se pretende obter a sua ou o seu acionamento,
respetivamente. Assim, é usada uma porta do MCU para controlar o interruptor de po-
tência de forma a alimentar os sensores e o SoC apenas quando necessário. Para isso,

12INR18650-35E - Especificações: https://www.orbtronic.com/content/
samsung-35e-datasheet-inr18650-35e.pdf

43

https://www.orbtronic.com/content/samsung-35e-datasheet-inr18650-35e.pdf
https://www.orbtronic.com/content/samsung-35e-datasheet-inr18650-35e.pdf

4. Implementação Experimental

foi escolhido o transístor DMP2022LS 13 que é usado como interruptor. É um transístor
MOSFET do tipo P, que permite controlar uma corrente até −8A @ +75ºC, e possuiu
uma baixa resistência de 25mΩ @ VGS = 2, 5V .

Figura 4.18: Circuito do interruptor de potência com MOSFET [Apêndice II.1].

O circuito elétrico do interruptor de potência está apresentado na Figura 4.18. A
resistência R1 garante a zona de corte quando o transístor Q1 também está ao corte,
evitando que o transístor entre na zona de tríodo. A resistência R2 garante a saturação
de Q1 quando a porta do MCU está com nível lógico 1 (3, 3V). Quando o transístor Q1
está saturado obriga também à saturação de Q2. Quando o transístor Q2 está saturado
permite a circulação de corrente que alimenta os sensores, o servomotor e o SoC.

DCC1 - Conversor DC/DC MCU

Os MCU são dispositivos sensíveis a sobretensões, pelo que devem ser alimentados com
a tensão indicada pelo fabricante (1, 8V a 3, 6V) no caso do MSP430G2553. A tensão
da bateria varia entre 3, 3V (descarregada) a 4, 2V (carregada). Para alimentar o MCU
adequadamente com a tensão recomendada de 3, 3V , é usado um regulador de tensão
MCP1700-330 14, que fornece uma tensão de saída fixa de 3, 3V para uma corrente máxima
de 250mA. Tem um baixo consumo de energia em repouso (1, 6µA), e apresenta uma baixa
queda de tensão (LDO 178mV), o que o torna adequado para o nosso sistema.

13DMP2022LS - Especificações: https://www.diodes.com/assets/Datasheets/ds31373.pdf
14MCP1700-330 - Especificações: https://ww1.microchip.com/downloads/en/DeviceDoc/

MCP1700-Low-Quiescent-Current-LDO-20001826E.pdf

44

https://www.diodes.com/assets/Datasheets/ds31373.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP1700-Low-Quiescent-Current-LDO-20001826E.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP1700-Low-Quiescent-Current-LDO-20001826E.pdf

4.2. Módulo Lisímetro

Figura 4.19: Circuito do conversor DC/DC para alimentar o MCU [Apêndice II.1].

A Figura 4.19 apresenta o circuito conversor DC/DC para alimentar o MCU. Os valores
dos condensadores C1 e C2 são os recomendados pelo fabricante.

DCC2 - Conversor DC/DC - Sensores e SoC

A tensão de alimentação dos sensores e do SoC é igual ao do MCU sendo o consumo médio
do conjunto é inferior a 250mA, pelo que foi escolhido o regulador de tensão MC1700-330,
pelas características já apresentadas usando-se o mesmo circuito da Figura 4.19.

4.2.2 Implementação do módulo do lisímetro

A implementação do módulo foi dividida em três partes. Uma parte diz respeito ao software
desenvolvido para o MCU MSP430G2553, outra para o software desenvolvido para o SoC
ESP8266, e a última corresponde à concepção do hardware: placa de circuito impresso,
instalação dos componentes e respectiva caixa.

Software do MCU

Para o desenvolvimento e teste do código para o MCU, foi usada uma placa de desenvol-
vimento MSP-EXP430G2ET 15 da Texas Instruments, apresentada na Figura 4.20.

A programação do MCU foi realizada recorrendo ao ambiente de desenvolvimento inte-
grado (Integrated Development Environment (IDE)) Code Composer Studio (CCS) [96]. O

15EXP430G2ET - Especificações: https://www.ti.com/lit/ug/slau772a/slau772a.pdf?ts=
1638397419840

45

https://www.ti.com/lit/ug/slau772a/slau772a.pdf?ts=1638397419840
https://www.ti.com/lit/ug/slau772a/slau772a.pdf?ts=1638397419840

4. Implementação Experimental

Figura 4.20: Placa de desenvolvimento EXP430G2ET [95].

código foi escrito em linguagem de programação C. A Tabela 4.3 apresenta os ficheiros de
código desenvolvidos para o MCU, listando as diversas bibliotecas usadas para comunicação
e interface com os sensores.

Tabela 4.3: Código desenvolvido para o MCU MSP430G2553.

Nome Descrição Loc.

main.c Código principal I.1
CDC.c Biblioteca com funções de comunicação e conversão de dados I.2
delay.h Biblioteca com funções de atraso de ms e µs segundos I.3
ds18b20.h Biblioteca com funções dos sensores DS18B20 I.5
ds18b20.c Biblioteca com funções dos sensores DS18B20 I.4
hx711.h Biblioteca com funções do HX711 I.6
servo.h Biblioteca com funções de controlo do servomotor I.7
sht3x.h Biblioteca com funções do sensor SHT30 I.8
TSL2561.h Biblioteca com funções do sensor TSL2561 I.9
swi2c_master.h Biblioteca com funções do protocolo I2C por software I.11
swi2c_master.c Biblioteca com funções do protocolo I2C por software I.10

O MCU para além de fazer a leitura dos dados dos sensores, faz a gestão de energia
do módulo. Pretende-se fazer a leitura dos sensores a intervalos de tempo de 10 minutos,
sendo necessário menos de 60 segundos para fazer a leitura de todos os sensores, drenar a
água do vaso intermédio, e enviar os dados para o SoC, que são posteriormente enviados
para a camada nuvem. Como durante cerca de 90% do tempo o sistema não está a produzir
trabalho, o MCU é usado para para ligar e desligar os sensores e o SoC. Após a leitura dos

46

4.2. Módulo Lisímetro

sensores e a comunicação com o SoC terminar, o MCU desliga os subcircuitos entrando
em modo de baixo consumo LPM. Este ciclo de leitura de dados volta a repetir-se quando
é atingido o intervalo de tempo pré-definido para leitura dos dados ou caso se pressione
o botão multifunções. A Figura 4.21 apresenta um diagrama com o funcionamento do
software do MCU.

Ligar os
Subcircuitos

Obter Dados
dos Sensores

Abrir a Válvula
de Drenagem

Esperar pela
Drenagem

Obter o Peso da
Água drenada

Formatar Dados
Enviar os dados
para o Broker

Desligar os
Subcircuitos

Entrar em
LPM

N

BM

S

N
TAD

S

BM – Botão Multifunções
TAD – Tempo de Aquisição de Dados

Figura 4.21: Diagrama de funcionamento do Módulo Lisímetro.

O ficheiro main.c contém o código principal do MCU, este foi implementada uma
máquina de estados com as funcionalidades atrás descritas. Este programa faz inclusão de
bibliotecas dos sensores e utilitários, necessárias para o correto funcionamento. O cabeçalho
de cada biblioteca possui a documentação sobre o autor e histórico do seu desenvolvimento.

Software do SoC

A programação do módulo SoC ESP8266 foi feita recorrendo ao IDE Arduino 16. Para
desenvolver e testar o código, usamos a placa de programação ESP8266PROG 17, específica
para programar módulos ESP-01, desenvolvida pela JOY-it. A Figura 4.22 apresenta a
placa de programação do módulo ESP-01 com um módulo ligado.

O SoC ESP8266 recebe os dados formatados vindos do MCU através da sua porta série
e, depois de estabelecer uma ligação de internet, obtém a data e hora atual através de um
servidor NTP [72] para colocar uma marca temporal nos dados. A seguir esses dados são
empacotados num objeto JavaScript Object Notation (JSON) [98], e enviados para camada
de nuvem usando o protocolo MQTT [76] através de uma publicação. Adicionalmente

16Arduino IDE 1.8.16 - Especificações: https://www.arduino.cc/en/software
17ESP8266PROG - Manual: https://joy-it.net/files/files/Produkte/SBC-ESp8266-Prog/

SBC-ESP8266-Prog-Manual.pdf

47

https://www.arduino.cc/en/software
https://joy-it.net/files/files/Produkte/SBC-ESp8266-Prog/SBC-ESP8266-Prog-Manual.pdf
https://joy-it.net/files/files/Produkte/SBC-ESp8266-Prog/SBC-ESP8266-Prog-Manual.pdf

4. Implementação Experimental

Figura 4.22: Placa de programação de módulos ESP-01 [97].

também é enviado o nível de sinal da rede WiFi, para aferir a qualidade da ligação com a
internet.

O código da função loop() com a implementação das funcionalidades pretendidas, pode
ser visualizado no Apêndice I.12. A Tabela 4.4 lista os ficheiros de código usado no SoC
ESP8266.

Tabela 4.4: Código usado no SoC ESP8266.

Nome Descrição

MQTT_Lysimeter.ino Código principal I.12.
NTPClient.h Cliente NTP, para obter a data e a hora da internet.
EspMQTTClient.h Cliente MQTT para ESP8266.
WiFiManager.h Gestor de rede Wi-Fi.
EasyButton.h Utilitário Wi-Fi para ligação à rede pela 1ª vez.

Apenas foi desenvolvido de raiz o código principal ”MQTT_Lisimetro.ino” sendo
que todas as outras bibliotecas foram obtidas pela partilha de código desenvolvido por
terceiros. A origem das bibliotecas é apresentada sobre a forma de um comentário junto
da diretiva de importação das mesmas no código principal. Estas bibliotecas foram previ-
amente instaladas no IDE Arduino.

Hardware

O esquema elétrico completo do módulo lisímetro é apresentado na Figura 4.23. O esquema
do circuito elétrico foi realizado com o software (Electronics Design Automation (EDA))

48

4.2. Módulo Lisímetro

KiCad 18, que também permite o desenho das placas de circuito impresso (Printed Circuit
Board (PCB)).

Este circuito foi realizado com uma placa de circuito impresso perfurada ponto a ponto,
instalada dentro de uma caixa IP65 com dimensões 82.1x158.5x55mm. A estanquidade da
passagem dos diversos cabos dos sensores é assegurada por meio da utilização de bucins.
A Figura 4.24 mostra imagens da caixa do módulo lisímetro e do seu interior.

O Apêndice III.1 apresenta um orçamento detalhado dos custos com material para
construir o módulo, tendo sido despendida a importância de cerca de €240 para aquisição
do material necessário.

18KiCad - Características: https://www.kicad.org/

49

https://www.kicad.org/

4. Implementação Experimental

Figura 4.23: Esquema Elétrico Completo do Módulo Lisímetro

50

4.3. Módulo Câmara

Figura 4.24: Caixa do módulo lisímetro

Figura 4.25: Visão geral do lisímetro.

4.3 Módulo Câmara

A estrutura de hardware do módulo da câmara é apresentada na Figura 4.26. A Tabela 4.5
apresenta a listagem e legenda dos componentes usados para implementação, incluindo as
especificações mais importantes. O diagrama ilustra as interligações entre os diversos

51

4. Implementação Experimental

dispositivos.

CS SBC

+5 VDC

MCU

+3,3 VDC

Botão
Multifunções

D7
UART

D5,6
MIPI

SL BCC BT PS DCC2

DCC1

+5V - SBC

+3,3V - MCU

D9
A0

Cena

Cultura

Wi-Fi

Figura 4.26: Diagrama de blocos do módulo câmara [2].

Tabela 4.5: Componentes de hardware do módulo câmara.

Descrição Modelo Especificações

CS Sensor de Imagem RPi Cam. Mod. 2 IMX219, 8Mpx sensor
SBC Computador numa Placa RPi 3B+ 1.4 GHz, BCM2837, 4GB
MCU Microcontrolador MSP430G2553 16 MHz, 16KB/512B
SL Painel Solar Fotovoltaico FAL09004 5VDC, 1W, 100x80mm
BCC Controlador Carga de Bateria TP4056 Module 1A, 1xBAT Li-Ion
BT Bateria Li-Ion INR18650-35E 3.6V, 3500mAh Samsung
PS Interruptor de Potência DMP2022LSS -10A, P-MOSFET
DCC1 Conversor DC/DC MCP1700-3302E 3.3V, 250mA, LDO
DCC2 Conversor DC/DC VMA402 Module 5V, 2A, Step-Up LM2577

4.3.1 Escolha de componentes de hardware

Este módulo que partilha alguns dos componentes com as mesmas especificações do mó-
dulo lisímetro, sendo, a seguir apresentada a escolha, descrição e justificação dos novos

52

4.3. Módulo Câmara

componentes usados neste módulo.
Componentes apresentados e descritos no módulo lisímetro na Secção [4.2.1]: MCU,

SL, BCC, BT, PSW, BVS e DCC1.

CS - Sensor de Imagem

Para capturar a cena foi escolhido a 2ª versão do módulo de câmara Raspberry Pi 19. Este
módulo usa o sensor de imagem IMX219 da Sony, com uma resolução de 8Mpx. Este
sensor apresenta uma excelente qualidade de imagem, em condições de iluminação exterior
diurna. A Figura 4.27 apresenta a imagem deste módulo.

Figura 4.27: Módulo câmara Raspberry Pi V2 [99].

SBC - Computador numa Placa

Para processar as imagens capturadas é necessário um dispositivo com capacidade de pro-
cessamento elevado e com uma interface para ligação ao módulo de câmara atrás descrito.
A escolha recaiu no SBC Raspberry Pi (RPi) 3B+ 20 . Este SBC tem internamente o
SoC Broadcom BCM2837B0 com um CPU Advanced RISC Machine (ARM) [100] quad-
core, de 64bits a funcionar a uma frequência de 1,4GHz. Tem enumeras funcionalidades,
contudo destaca-se a porta Camera Serial Interface (CSI) [101] para ligação da câmara,
rede WLAN integrada, e a exposição de 40 pinos General Purpose Input/Output (GPIO),
necessárias para a implementação deste módulo. A Figura 4.28 apresenta uma imagem do
SBC Raspberry Pi 3B+.

19Módulo de Câmara RPi V2 - Especificações: https://www.raspberrypi.com/products/
camera-module-v2/

20RPi 3B+ - Especificações: https://www.raspberrypi.com/products/
raspberry-pi-3-model-b-plus/

53

https://www.raspberrypi.com/products/camera-module-v2/
https://www.raspberrypi.com/products/camera-module-v2/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/

4. Implementação Experimental

Figura 4.28: SBC Raspberry Pi 3B+ [102].

DCC2 - Conversor DC/DC SBC

A bateria escolhida tem uma tensão nominal de 3.6V, variando entre os 3.3V, quando
descarregada, e 4.2V quando está completamente carregada. No entanto, o SBC Raspberry
Pi 3B+ necessita de uma tensão estabilizada de 5V e uma corrente máxima de 2.5A, para
isso utilizou-se um conversor DC/DC elevador de tensão para o alimentar. Este conversor é
baseado no CI LM2577 21 é produzido pela Texas Instruments. O módulo com a referência
VMA402 22 produzido pela Velleman permite o ajuste da tensão de saída e fornecer a
corrente necessária ao correto funcionamento do SBC. A Figura 4.29 apresenta a imagem
deste módulo.

Figura 4.29: Módulo VMA402 - Conversor DC/DC [103].

21LM2577 - Especificações:https://www.ti.com/lit/ds/symlink/lm2577.pdf
22VMA402 - Especificações:https://www.velleman.eu/products/view?id=435562

54

https://www.ti.com/lit/ds/symlink/lm2577.pdf
https://www.velleman.eu/products/view?id=435562

4.3. Módulo Câmara

4.3.2 Implementação do módulo câmara

A implementação do módulo câmara foi dividida em três partes. Uma parte diz respeito
ao software desenvolvido para o MCU MSP430G2553, outra para o software desenvolvido
para o SBC Raspberry Pi, e por último a concepção do hardware, nomeadamente: a placa
de circuito impresso, a instalação dos componentes e respetiva caixa.

Software do MCU

Para o desenvolvimento e teste do código para o MCU, foram usadas a mesmas ferramen-
tas enumeradas no módulo lisímetro, nomeadamente a placa de desenvolvimento MSP-
EXP430G2ET [95], e o IDE CCS [96]. A Tabela 4.6 apresenta a listagem dos ficheiros de
código implementado no MCU do módulo da câmara.

Tabela 4.6: Código desenvolvido para o MCU do módulo da câmara.

Nome Descrição Loc.

main.c Código principal I.13
CDC.c Biblioteca com funções de comunicação e conversão de dados I.2
delay.h Biblioteca com funções de atraso de ms e µs segundos I.3

Neste módulo, o MCU é responsável por fazer a gestão de energia do módulo e moni-
torizar a tensão da bateria. O circuito para a medição da tensão da bateria é idêntico ao
do módulo lisímetro já descrito anteriormente apresentado na Figura 4.13.

Quando o módulo é ligado pela primeira vez, o MCU ativa a porta que controla a
alimentação do SBC, sendo programado no MCU o tempo necessário para o SBC fazer
o arranque do Sistema Operativo (SO) Raspberry Pi OS. Após esse tempo o MCU usa o
seu ADC interno fazer a leitura da tensão da bateria e envia essa informação através da
porta série para o SBC. Depois disso, o MCU aguarda que o SBC execute e complete as
operações que tem predefinidas e faça o encerramento do SO, tornando possível desligar
a energia do SBC em segurança. De seguida o MCU calcula o tempo necessário para a
próxima leitura de imagem, com base na tabela de leituras, e afeta a variável que guarda
o intervalo de tempo entre leituras, entrando de seguida em modo de poupança de energia
(LPM). O MCU fica em LPM até ter decorrido o intervalo de tempo predefinido para uma
nova aquisição de imagem, ou quando é pressionado o botão multifunções.

O ficheiro main.c contém o código principal do MCU, onde está implementada uma
máquina de estados com as funcionalidades descritas, que pode ser consultado no Apên-
dice I.

55

4. Implementação Experimental

Software do SBC

Depois de instalar o sistema operativo Raspberry Pi OS [104] no SBC, na primeira vez que
o SO arranca, é configurada a rede Wi-Fi, é ativada a porta série, a porta CSI da câmara,
o serviço Secure Shell (SSH), e o auto login. Posteriormente foi criada a pasta de trabalho
”lysimeter” para guardar o código desenvolvido e uma sub-pasta ”image” para guardar as
fotos adquiridas. Depois de atualizar o SO, foi instalado um conjunto de bibliotecas para
se ter as funcionalidades pretendidas. A Tabela 4.7 apresenta as bibliotecas instadas e as
respetivas funcionalidades.

Tabela 4.7: Bibliotecas instaladas no SBC RPi

Nome Versão Descrição Ref.:

paho-mqtt 1.6.1 Cliente MQTT [105]
picamera 1.13 Captura de imagem da câmara [106]
pyserial 3.5 Comunicação com a porta série [107]

O código para o SBC RPi foi desenvolvido usando a linguagem de programação Python23,
decomposto em cinco scripts:

• start.py - Código principal [I.14];

• shutd.py - Encerra o sistema operativo [I.18];

• mqtt.py - Aguarda dados na porta série e envia para a cloud via MQTT [I.17];

• camera.py - Tira uma fotografia e guarda na pasta Image [I.15];

• copyimage.py - Envia as imagens da pasta Image e envia para o servidor SFTP
[I.16] ;

O código start.py é executado no arranque do SO com a adição de uma linha para a
execução do código ”python /home/pi/lysimeter/start.py” no ficheiro .bashrc. Este script
começa por tirar uma fotografia executando a função takePhoto(), posteriormente envia
essa fotografia para o servidor Secure File Transfer Protocol (SFTP) ao executar a função
copyImage(), e envia os dados do estado da câmara num objeto JSON via protocolo MQTT,
para a cloud com a execução da função mqtt(). Terminadas as tarefas é chamada a função
shutd() para encerrar o sistema operativo.

23Python - Linguagem de programação de alto nível [55]

56

4.3. Módulo Câmara

Para enviar as imagens para o servidor SFTP sem necessidade de fazer login foi gerado
um par de chaves de autenticação pública/privada no SBC e posteriormente guardada no
servidor remoto [108].

Hardware

O esquema do circuito elétrico completo do módulo câmara II.2 foi realizado com o soft-
ware EDA Kicad à semelhança do módulo lisímetro, tendo sido igualmente usado para
desenvolver o desenho de uma placa de circuito impresso PCB da Figura II.4 II.3.

A PCB foi produzida pelo processo de fresagem Computer Numerical Control (CNC) [109].
Através da conversão do desenho da PCB em código compatível com a CNC (G-Code 24)
para o isolamento das pistas, a furação e o corte foi efetuado com a aplicação FlatCAM 25.

O esquema elétrico do módulo câmara é apresentado no Apêndice II.2, é possível ver
o aspecto da parte frontal da PCB simulada no apêndice II.3 e a parte traseira no apên-
dice II.4

A placa de circuito impresso produzida, juntamente com o SBC RPi, foi instalada dentro
de uma caixa IP65 com dimensões de 82.1x158.5x55mm. No seu exterior foi acoplado o
painel solar. A Figura 4.30 apresenta o aspeto exterior do módulo câmara.

Figura 4.30: Imagem do exterior do módulo câmara

Para realização deste módulo foi despendido cerca de €120 na aquisição de material e
componentes electrónicos necessários. O Apêndice III.2 apresenta um orçamento detalhado
dos custos com material para construção do o módulo câmara.

24G-Code - Código G, conjunto de instruções compatível com CNC [110]
25FlatCAM - Aplicação para conversão de desenhos em formato compatível com CNC [111].

57

4. Implementação Experimental

Figura 4.31: Imagem do interior do módulo câmara

4.4 Módulo de Computação na Nuvem

A estrutura de software do módulo computação na nuvem é apresentado na Figura 4.32.

Sistema Operativo
Hardware

Software de Virtualização
Máquina Virtual Ubuntu Server

Contentor Docker

Broker MQTT
Mosquitto

Ferramentas
WEB - Node Red

Base de dados
MongoDB

Machine Learning
TensorFlow

SFTP
atmoz/sftp

Figura 4.32: Virtualização dos serviços na nuvem [2].

O módulo de computação na nuvem foi implementado numa máquina virtual (Virtual
Machine (VM) [112]) com o sistema operativo Ubuntu Server 20.04 LTS [113]. A utiliza-
ção de máquinas virtuais permite portabilidade entre sistemas e máquinas físicas de uma
maneira rápida e eficiente.

Todos os serviços de software são executados em contentores Docker [114], que apre-
sentam as seguintes características:

• Portabilidade de aplicações;

• Isolamento de processos;

58

4.4. Módulo de Computação na Nuvem

• Prevenção de violação externa;

• Gestão do consumo de recursos porque requerem menos recursos que as máquinas
virtuais tradicionais usadas na implantação de aplicações isoladas.

A Figura 4.33 apresenta à esquerda a estrutura de um sistema baseado em dockers e à
direita outro baseado em máquinas virtuais.

Figura 4.33: Comparativo entre contentores docker e máquinas virtuais [114].

Os serviços que estão a correr em dockers são os seguintes:

• Mosquitto [115] - Broker 26 MQTT.

• Node-RED [116] - Ferramenta de programação visual baseada em Node.js [117].

• MongoDB [118] - Servidor de base de dados não relacional;

• AT-MOZ [119] - Servidor de transferência de ficheiros seguro (SFTP);

• TensorFlow [120] - Plataforma para Machine Learning (ainda não implementado).

O MQTT é um protocolo para troca de mensagens caracterizado por usar pouca largura
de banda e recursos de hardware reduzidos. Foi desenvolvido pela IBM e Eurotech na
década dos anos 90, seguindo um padrão de publicação/subscrição. Quando um elemento
deseja receber informação relacionada com um determinado tema faz uma subscrição ao
elemento que gere as publicações e subscrições associadas a esse tema, designado por
Broker, da mesma forma os elementos que desejam publicar informações podem fazê-lo por

26Broker - Elemento responsável por gerir as subscrições/publicações MQTT

59

4. Implementação Experimental

intermédio do Broker. A Figura 4.34 apresenta o diagrama simplificado do funcionamento
do protocolo MQTT.

Figura 4.34: Diagrama de funcionamento do protocolo MQTT [121].

No nosso caso prático, os diversos lisímetros fazem publicações dos dados no Broker
com o tópico ”LISIMETRO”, o Node-Red faz a subscrição no mesmo tópico para receber os
dados. Os lisímetros fazem ligação ao Broker através do Uniform Resource Locator (URL):
lysimeter.ddnsfree.com usando a porta 1883.

O Node-RED [116] é uma ferramenta de programação visual de código aberto, possui
várias APIs e serviços online, tendo sido criado pela IBM Emerging Technology. Possui
um editor visual que permite arrastar e soltar elementos que trabalha diretamente no
navegador (Browser).O Node-RED possui vários nós que podem ser arrastados e colocados
no ecrã, permitindo programar de forma nativa em JavaScript [122], ou outras linguagens
de programação através da instalação de pacotes. A Figura 4.35 apresenta o diagrama de
fluxo Node-RED do protótipo.

O nó MQTT faz a subscrição do tópico ”LISIMETRO”. Sempre que um lisímetro faz
uma publicação no Broker esse nó recebe como payload um objeto JSON, com os dados
do referido lisímetro. Depois o nó Data decompõe o objeto JSON nos diversos campos
dos sensores através do código em JavaScript listado em I.19. Os dados já unificados são
enviados para nós do tipo Dashboard para posteriormente serem apresentados no painel
de visualização. Foram criadas duas páginas para visualização dos dados do lisímetro, que
são:

• Indicadores tipo manómetro, com indicação da última leitura enviada pelo lisímetro
(Fig. 4.36), com o URL: http://lysimeter.ddnsfree.com:1880/ui/#!/0;

60

lysimeter.ddnsfree.com
http://lysimeter.ddnsfree.com:1880/ui/#!/0

4.4. Módulo de Computação na Nuvem

Figura 4.35: Diagrama de fluxo do Node-Red.

• Gráficos com os dados recebidos do lisímetro relativo às ultimas 48H (Figura 4.37),
com o URL: http://lysimeter.ddnsfree.com:1880/ui/#!/1.

O mongoDB [118] é um sistema de gestão de base de dados não relacional, do tipo
NoSQL [77], orientado a documentos, de código aberto e multi-plataforma. As bases de
dados de documentos ampliam o conceito da base de dados de chave-valor ao organizarem
documentos inteiros em coleções. Suportam pares chave-valor alinhados e permitem con-
sultas de qualquer atributo num documento [77]. As principais características do mongoDB
são: código aberto, elevado desempenho, alta disponibilidade, e escalabilidade automática.

No desenvolvimento do protótipo do lísimetro, o mongoDB foi instalado num conten-
tor docker para fins de teste, contudo, para explorar ao máximo as características atrás
mencionadas, nomeadamente o facto de ser uma base de dados distribuída, é necessário
termos um cluster 27 com várias máquinas espalhadas numa rede de computadores.

O AT-MOPS é um servidor de ficheiros seguro SFTP, com Open SSH [124] disponível
para instalação num contentor (container). Este servidor é compatível com acesso através

27Cluster - Conjunto de máquinas a trabalhar na mesma tarefa [123]

61

http://lysimeter.ddnsfree.com:1880/ui/#!/1

4. Implementação Experimental

Figura 4.36: Painel de indicadores dos sensores do lisímetro.

de chave pública/privada (Rivest-Shamir-Adleman (RSA) [125]). O acesso ao servidor
SFTP sem necessidade de autenticação por utilizador e palavra-passe é necessário para
que o módulo câmara possa enviar as imagens capturadas para o servidor. No SBC do
módulo câmara são geradas as chaves RSA (pública e privada), e depois a chave pública
é copiada para o servidor SFTP. Lista de comandos usados para configurar o acesso ao
servidor através de chaves RSA:

Verifica se existe alguma chave
ls -al ~/.ssh/id_*.pub
Gera um par de chaves RSA
ssh-keygen -t rsa -b 4096 -C "18510@stu.ipbeja.pt"
Copia chave publica para o servidor
ssh-copy-id lisimetro@lysimeter.ddnsfree.com
Testar a ligação SSH sem password
ssh lisimetro@lysimeter.ddnsfree.com
Sair do SSH
exit

62

4.5. Estrutura de Suporte

Figura 4.37: Painel com gráficos das últimas 48h dos sensores do lisímetro.

4.5 Estrutura de Suporte

De modo albergar os 3 vasos do lisímetro como representado na Figura 3.1, foi necessário
dimensionar uma estrutura metálica de suporte. A dimensão desta estrutura pode ser
ajustada em função da cultura pretendida e das dimensões o lisímetro. No caso, a estrutura
foi dimensionada para uma cultura de morangueiros em vaso.

Para a colocação das plantas com o respetivo solo, foi usado um vaso cónico com as
dimensões de 350x300mm (DxA) de polietileno. A colocação dos sensores de temperatura
e humidade no vaso do solo foram feitas através de perfurações nas profundidades preten-
didas. Para a retenção da água drenada foi utilizado um recipiente plástico cilíndrico com
as dimensões de 200x120mm (DxA). Na fase de testes do protótipo não foram realizadas
análises químicas à água drenada, como tal não foi usado o vaso inferior.

A partir das medidas dos vasos, foi dimensionado as medidas da estrutura. A Figura
4.38 apresenta as medidas da estrutura usada no protótipo, com os respectivos vasos.

63

4. Implementação Experimental

300,0

2
0
0
,0

250,0

200,0

1
0
0
,0
0

3
0
0
,0

350,0

260,0

Figura 4.38: Medidas da Estrutura do Lisímetro [mm].

A estrutura foi produzida com tubos e chapa de aço galvanizado, unidas por meio de
soldadura de arco elétrico, acabado com pintura. Para a construção de futuras estruturas
é desejável a utilização de aço inox, para evitar a oxidação, nomeadamente junto aos pontos
de soldadura, o que permite aumentar a longevidade da estrutura.

4.6 Aspetos Experimentais

Ao longo da implementação do protótipo procederam-se a diversas alterações do projeto
de forma a corrigir alguns problemas e também a melhorar as características do lisímetro.

4.6.1 Construção do protótipo

Os circuitos eléctricos dos módulos foram desenhados no KiCad [126] e concretizados em
placas de circuito impresso. Estas placas de circuito impresso, juntamente com os restantes
componentes/módulos, foram alojados em caixas com certificação IP65 28. A passagem dos
cabos foi efetuada através de bucins que asseguram o mesmo índice de proteção das caixas.

28IP65 - Índice de proteção de elementos sólidos e líquidos [127]

64

4.6. Aspetos Experimentais

As figuras 4.24, 4.25, 4.30, 4.31 apresentadas anteriormente evidenciam os pormenores de
construção descritos.

4.6.2 Gestão de energia

Desde o início existiu uma preocupação com a gestão de energia. Sendo o protótipo ali-
mentado por energia solar, pretende-se o seu funcionamento mesmo após vários dias sem
sol.

O módulo lisímetro em funcionamento possui um consumo de corrente máximo de
320mA em quando está a transmitir dados, a bateria de Li-Ion tem uma tensão nominal
de 3.6V , e são necessários cerca de 20s para obter os dados dos sensores e fazer a sua os
transmissão para a cloud. Os valores de corrente, foram obtidos através de medições no
protótipo. A Figura 4.39 apresenta o cálculo da energia diária do módulo lisímetro.

Figura 4.39: Cálculo da energia diária do módulo lisímetro.

O módulo câmara em funcionamento tem um consumo de corrente máximo de 1580mA

em operação. Possui uma bateria com uma tensão média de 3.6V , e necessita de 60s para
iniciar o SO, tirar a fotografia, e enviar para o servidor SFTP. A Figura 4.40 apresenta o
cálculo da energia diária do módulo lisímetro.

Esta folha de cálculo permite, de uma forma simples estimar a autonomia dos módulos
na ausência de luz solar. Como o cálculo é feito com base no consumo de corrente máximo
dos módulos, os valores das autonomias reais serão sempre maiores.

A folha de cálculo também apresenta uma estimativa da energia produzida por dia pelo
painel solar, considerando um tempo de exposição de 4h diárias (Inverno), desta forma é

65

4. Implementação Experimental

Figura 4.40: Cálculo da energia diária do módulo câmara.

possível inferir se a produção de energia no inverno é suficiente para manter o módulo em
funcionamento. Em qualquer dos casos a energia produzida diária é quatro vezes superior
à necessária.

O tempo de funcionamento sem painel solar é calculado em função do consumo de
energia diário e da capacidade da bateria utilizada. Os cálculos apresentados nas figuras
anteriores usam uma bateria com uma capacidade de 3500mAh, sendo possível alterar a
capacidade da bateria e obter novos valores.

Para comprovar os cálculos apresentados foi desligado o módulo lisímetro em 25/09/2021
pelas 20h00, em que a tensão da bateria era de 4.2V , apresentando-se completamente carre-
gada. O sistema ficou a funcionar até a carga da bateria rondar os 30%, no dia 12/10/2021
pelas 9h15 verificou-se que a tensão da bateria era de 3.42V , tendo sido reposto a ligação
do painel solar. Assim, foi possível comprovar uma autonomia de cerca de 16,5 dias. A ba-
teria recuperou a carga máxima passado 3 dias, de acordo com o valor também expectável
considerando o painel e a bateria usados.

4.6.3 Visualização dos dados

Os valores dos dados enviados pelo lisímetro são visualizados num painel usando um cliente
com navegador WEB (Fig.: 4.36). Os valores recolhidos durante um período de 2 dias
são disponibilizados em forma de gráfico, para poder inferir a evolução e tendência das
grandezas (Fig.: 4.37).

O serviço WEB é compatível com a moderna tecnologia Progressive Web App (PWA) [128],
sendo possível aceder aos dados do lisímetro a partir de qualquer dispositivo móvel através

66

4.6. Aspetos Experimentais

de uma interface similar de aplicativo para Smartphone. A Figura 4.41 apresenta a imagem
dos dados dos sensores num Smartphone.

Figura 4.41: Dados dos sensores apresentados num Smartphone.

As imagens capturadas e enviadas para o servidor SFTP, podem ser acedidas através de
um cliente SFTP, nomeadamente a aplicação FileZilla [129], através do URL: lysimeter.
ddnsfree.com.

A Figura 4.42 apresenta uma imagem de alta resolução das plantas, adquirida pelo
módulo câmara, à direita é apresentada uma imagem detalhada do fruto onde é possível
detectar o estado das plantas a olho nu. No entanto, o objetivo futuro é ter um sistema
baseado em ML a funcionar na nuvem, capaz de detetar o estado dos frutos, as possí-
veis doenças das plantas, e disparar automaticamente um aviso e enviar um alerta aos
utilizadores pré-definidos através de e-mail ou Short Message Service (SMS).

67

lysimeter.ddnsfree.com
lysimeter.ddnsfree.com

4. Implementação Experimental

Figura 4.42: Direita: Exemplo de uma imagem capturada, Esquerda: Detalhe da imagem
ampliada.

4.7 Conclusão
O protótipo de lisímetro apresentado exemplifica a aplicação do paradigma IoT na resolução
de um problema comum e fundamental na agricultura, a medição do equilíbrio evaporação-
transpiração.

Vários outros parâmetros físicos do solo e ambientes são medidos, assim como um
conjunto de imagens para monitorizar a evolução das plantas. Estes dados podem ser
usados para detectar doenças e pragas usando um sistema baseado em Machine Learning.

Os módulos lisímetro e câmara superaram a autonomia calculada, o que indica que o
consumo de energia é inferior ao estimado.

O sistema de lisímetro proposto oferece uma solução integrada de baixo custo e eficiência
energética para a medição da evapotranspiração, que pode ser usada em diferentes locais
e cenários, nomeadamente diferentes culturas.

O servidor WEB com tecnologia PWA permite um acesso ao sistema de uma forma
transversal, sendo possível aceder aos dados do lisímetro a partir de qualquer dispositivo
móvel através de uma interface similar de aplicativo para Smartphone.

A ferramenta de programação visual Node-RED, além de criar um Dashboard num pá-
gina WEB com a visualização dos dados lisímetro, permite fazer Debug das comunicações,
nomeadamente ver o Payload das mensagens enviados pelo lisímetro.

68

Capítulo 5

Conclusões

Neste capítulo são apresentadas as conclusões gerais e as perspetivas de desenvolvimento
futuro.

5.1 Conclusões gerais

O protótipo de lisímetro apresentado exemplifica a aplicação do paradigma IoT na resolução
de um problema comum e fundamental na agricultura: a medição do equilíbrio hídrico
evaporação-transpiração. Adicionalmente, são medidos parâmetros físicos do solo e do meio
ambiente, sendo feita a aquisição de imagens das plantas com o objetivo de monitorizar a
evolução da cultura. Estes dados podem ser usados para alimentar um sistema, baseado
em ML, para deteção de doenças e pragas e predição do rendimento. O estudo realizado
permite concluir que é possível desenvolver sistemas para detecção de doenças e pragas em
plantas recorrendo a hardware de baixo custo.

A arquitetura proposta foi o ponto de partida para a construção de um protótipo
funcional para recolha de dados da ET, do solo e do meio ambiente. A abordagem IoT
permite redução de custos, elevado desempenho, escalabilidade e eficiência energética.

A arquitetura é composta por dois módulos independentes: o módulo lisímetro e o
módulo câmara que, por estarem na maior parte do tempo em modo de poupança de
energia LPM, são eficientes do ponto de vista energético, e podem trabalhar em condições
ambientais de temperatura e humidade extremas.

O objetivo desta arquitetura é permitir a monitorização contínua da cultura com o
consequente aumento da produtividade das culturas, redução do consumo de água, dado
que é possível calcular a quantidade exata de água que uma determinada planta necessita.

69

5. Conclusões

Este lísimetro permite de forma autónoma, e automática, a recolha em contínuo de
dados para alimentar sistemas de ML/Artificial Intelligence (AI), que são caracterizados
por necessitarem de grandes quantidades de dados de treino de modo a alcançarem uma
precisão elevada. Para otimizar os resultados é importante que os agricultores possam
interagir com o sistema através de uma página WEB, registando na plataforma a sua
análise, porventura mais experiente, da cultura sempre que sejam feitas visitas.

A conjugação de dados proveniente dos sensores de lisímetros inteligentes, do tipo
proposto e desenvolvido, com o processamento das imagens adquiridas pela câmara numa
rede neural convolucional irá permitir maior precisão e fiabilidade na detecção e prevenção
de doenças e pragas em plantas, assim como aprofundar o estudo da evolução das plantas
em função dos parâmetros ambientais.

Assim, o desenvolvimento e construção de um protótipo funcional permitiu comprovar
a arquitetura proposta, sendo o primeiro passo para a construção de um sistema completo
para monitorização das culturas.

O sistema de lisímetro proposto compreende os sistemas completos de aquisição de
dados, comunicação para a Cloud, armazenamento em base de dados e visualização remota
dos dados, consistindo numa solução integrada de baixo custo e eficiência energética para
a medição da evapotranspiração, que pode ser usado em diferentes locais e cenários, e com
diferentes culturas. É um sistema escalável em duas vertentes: o lisímetro é escalável em
termos da sua dimensão e tipo de cultura, e todo o sistema computacional pode receber,
armazenar e tratar dados de um grande número de lisímetros.

O servidor WEB com tecnologia PWA permite um acesso ao sistema de uma forma
transversal, sendo possível aceder aos dados do lisímetro a partir de qualquer dispositivo
móvel através de uma interface similar de aplicativo para Smartphone.

Os módulos lisímetro e câmara superaram a autonomia energética dimensionada, o que
indica que o consumo de energia é inferior ao estimado, tendo cumprido todos os requisitos
de projeto e superado todos os testes realizados, estando em modo de produção já há alguns
meses.

5.2 Desenvolvimento Futuro

Um próximo estágio de desenvolvimento deste projeto será a colocação de diversos lisíme-
tros em modo de produção com vista à recolha de um grande conjunto de dados: imagens
e dados dos sensores, de monitorização da cultura e do solo para desenvolver e treinar um
modelo de ML para inferir do estado de desenvolvimento das plantas e se existem problemas

70

5.2. Desenvolvimento Futuro

relacionados com o desenvolvimento da cultura, nomeadamente deteção do aparecimento
de doenças e pragas.

As pesquisas realizadas permitem inferir que quando necessitamos de uma estimativa
precisa da ET, devemos recorrer a um lisímetro de pesagem dado ser preciso, robusto e
fácil de construir, tal como o desenvolvido. Inclusive, os sistemas que recorrem a ML para
estimar a ET usam lisímetros de pesagem para a sua calibração. Relativamente ao estudo
de sistemas de aquisição e processamento de imagens na agricultura, os sistemas com maior
precisão são baseados no método de redes neuronais convolucionais CNN. A evolução das
redes neuronais, nomeadamente as DCNN, nos últimos cinco anos permitem criar sistemas
mais precisos, e com menor necessidade de ajustes. No entanto, a bibliografia sobre o
assunto mostra que é muito difícil criar um sistema universal para detecção de doenças em
plantas. Para se obter bons níveis de precisão e rapidez devemos ajustar os sistemas para
cada tipo de cultura e planta específica.

Também está planeado a integração do lisímetro num sistema geral de monitorização
de recursos hídricos, que reúne informação de diversas fontes, incluindo estações meteo-
rológicas, sistemas de monitorização da qualidade da água, sistemas de monitorização da
evaporação da água, sistemas de monitorização do nível da água de lagos e rios, etc., o que
permitirá ter um sistema completo para monitorizar a gestão da água. Está previsto que
este sistema integrado também forneça dados a um modelo de dados baseado em sistemas
de reconhecimento de padrões ML e/ou algoritmos de inteligência artificial que permitam
relacionar todos estes dados a fim de prever eventos e prevenir ameaças de longo prazo
associados com os recursos hídricos.

Outra vertente a ser desenvolvida consiste na implementação de mecanismos de se-
gurança ao nível do acesso, transmissão, e armazenamento dos dados, nomeadamente,
recorrendo a mecanismos de encriptação do tipo blockchain.

71

Bibliografia

[1] Água. [Online]. Disponível: https://unric.org/pt/agua/

[2] Carlos Almeida, João Miguel Santos, João C. Martins, e José Jasnau Caeiro, “Smart
Lysimeter with Crop and Environment Monitoring: Enhanced with Pest and Crop
Control,” in 4th IFIP International Internet of Things (IoT) Conference, Novembro
2021.

[3] “Lisímetro,” Junho 2019, page Version ID: 55578825. [Online]. Disponível:
https://pt.wikipedia.org/w/index.php?title=Lis%C3%ADmetro&oldid=55578825

[4] G. Vitali, M. Francia, M. Golfarelli, e M. Canavari, “Crop management with the
IoT: An interdisciplinary survey,” Agronomy, vol. 11, n. 1, p. 181, 2021, number:
1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Disponível:
https://www.mdpi.com/2073-4395/11/1/181

[5] W. Zhu, Y. Tian, e S. Wang, “Design of non-weighing type desert plant lysimeter
observation system based on PIC18,” in 2013 6th International Conference on In-
formation Management, Innovation Management and Industrial Engineering, vol. 3,
2013, pp. 42–44, ISSN: 2155-1472.

[6] “Microcontroller,” Junho 2021, page Version ID: 1027668018. [Online]. Disponível:
https://en.wikipedia.org/w/index.php?title=Microcontroller&oldid=1027668018

[7] G. Yang, C. Zhao, e Q. Xu, “Spatial-temporal analysis of field evapotranspiration
based on complementary relationship model and IKONOS data,” in 2013 IEEE Inter-
national Geoscience and Remote Sensing Symposium - IGARSS, 2013, pp. 2836–2839,
ISSN: 2153-7003.

[8] J. A. Hernández-Salazar, D. Hernández-Rodríguez, R. A. Hernández-Cruz, J. C.
Ramos-Fernández, M. A. Márquez-Vera, e F. R. Trejo-Macotela, “Estimation of

73

https://unric.org/pt/agua/
https://pt.wikipedia.org/w/index.php?title=Lis%C3%ADmetro&oldid=55578825
https://www.mdpi.com/2073-4395/11/1/181
https://en.wikipedia.org/w/index.php?title=Microcontroller&oldid=1027668018

Bibliografia

the evapotranspiration using ANFIS algorithm for agricultural production in gre-
enhouse,” in 2019 IEEE International Conference on Applied Science and Advanced
Technology (iCASAT), 2019, pp. 1–5.

[9] L. Ávila Dávila, M. Soler-Méndez, C. F. Bautista-Capetillo, J. González-
Trinidad, H. E. Júnez-Ferreira, C. O. Robles Rovelo, e J. M. Molina-Martínez,
“A compact weighing lysimeter to estimate the water infiltration rate in
agricultural soils,” Agronomy 2021, vol. 11, n. 1, p. 180, 2021, number: 1
Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Disponível:
https://www.mdpi.com/2073-4395/11/1/180

[10] E. Mavridou, E. Vrochidou, G. A. Papakostas, T. Pachidis, e V. G. Kaburlasos, “Ma-
chine vision systems in precision agriculture for crop farming,” Journal of Imaging,
vol. 5, n. 12, p. 89, 2019.

[11] A. Agarwal e B. Triggs, “Hyperfeatures – multilevel local coding for visual recogni-
tion,” in Computer Vision – ECCV 2006. Springer Berlin Heidelberg, 2006, pp.
30–43.

[12] D. Foley, “Gaussian Mixture Modelling (GMM),” Janeiro 2021. [Online]. Disponível:
https://towardsdatascience.com/gaussian-mixture-modelling-gmm-833c88587c7f

[13] “Mia Tutorial: Machine Learning Model Deployment on Mia,” Junho 2021. [Online].
Disponível: https://omdena.com/blog/mia-tutorial/

[14] “PCA (Principal Component Analysis) Machine Learning Tutorial.” [On-
line]. Disponível: https://www.projectpro.io/data-science-in-python-tutorial/
principal-component-analysis-tutorial

[15] Wikipédia, “Artificial neural network,” Website:, Janeiro 2020. [Online]. Disponível:
https://en.wikipedia.org/wiki/Artificial_neural_network

[16] R. Gandhi, “Support Vector Machine — Introduction to Machine Learning
Algorithms,” Julho 2018. [Online]. Disponível: https://towardsdatascience.com/
support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

[17] G. G. Hungilo, G. Emmanuel, e A. W. R. Emanuel, “Image processing techniques for
detecting and classification of plant disease,” in Proceedings of the 2019 International
Conference on Intelligent Medicine and Image Processing - IMIP '19. ACM Press,
2019.

74

https://www.mdpi.com/2073-4395/11/1/180
https://towardsdatascience.com/gaussian-mixture-modelling-gmm-833c88587c7f
https://omdena.com/blog/mia-tutorial/
https://www.projectpro.io/data-science-in-python-tutorial/principal-component-analysis-tutorial
https://www.projectpro.io/data-science-in-python-tutorial/principal-component-analysis-tutorial
https://en.wikipedia.org/wiki/Artificial_neural_network
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

Bibliografia

[18] Wikipédia, “Convolutional neural network,” Website:, Janeiro 2020. [Online].
Disponível: https://en.wikipedia.org/wiki/Convolutional_neural_network

[19] “Otsu’s method,” Outubro 2021, page Version ID: 1051475285. [Online]. Dis-
ponível: https://en.wikipedia.org/w/index.php?title=Otsu%27s_method&oldid=
1051475285

[20] “K Means Clustering | K Means Clustering Algorithm in Python,” Agosto
2019. [Online]. Disponível: https://www.analyticsvidhya.com/blog/2019/08/
comprehensive-guide-k-means-clustering/

[21] “RGB color model,” Dezembro 2021, page Version ID: 1061131512. [Online]. Dis-
ponível: https://en.wikipedia.org/w/index.php?title=RGB_color_model&oldid=
1061131512

[22] “HSL and HSV,” Dezembro 2021, page Version ID: 1059079850. [Online]. Disponível:
https://en.wikipedia.org/w/index.php?title=HSL_and_HSV&oldid=1059079850

[23] B. Malinga, D. Raicu, e J. Furst, “Local vs. Global Histogram-Based Color Image
Clustering.”

[24] “Local Binary Pattern - an overview | ScienceDirect Topics.” [Online]. Disponível:
https://www.sciencedirect.com/topics/engineering/local-binary-pattern

[25] T. Mamdouh, “Image Retrieval: Color Coherence Vector.” [Online]. Disponível:
https://owlcation.com/stem/Image-Retrieval-Color-Coherence-Vector

[26] O. B. Sassi, “Improved Spatial Gray Level Dependence Matrices for Texture
Analysis,” International Journal of Computer Science and Information Technology,
vol. 4, n. 6, pp. 209–219, Dezembro 2012. [Online]. Disponível: http:
//www.airccse.org/journal/jcsit/4612ijcsit15.pdf

[27] “Learn Naive Bayes Algorithm | Naive Bayes Classifier Examples,” Setem-
bro 2017. [Online]. Disponível: https://www.analyticsvidhya.com/blog/2017/09/
naive-bayes-explained/

[28] G. says, “Decision Tree Algorithm, Explained,” section: 2020 Jan
Tutorials, Overviews. [Online]. Disponível: https://www.kdnuggets.com/
decision-tree-algorithm-explained.html/

75

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/w/index.php?title=Otsu%27s_method&oldid=1051475285
https://en.wikipedia.org/w/index.php?title=Otsu%27s_method&oldid=1051475285
https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/
https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/
https://en.wikipedia.org/w/index.php?title=RGB_color_model&oldid=1061131512
https://en.wikipedia.org/w/index.php?title=RGB_color_model&oldid=1061131512
https://en.wikipedia.org/w/index.php?title=HSL_and_HSV&oldid=1059079850
https://www.sciencedirect.com/topics/engineering/local-binary-pattern
https://owlcation.com/stem/Image-Retrieval-Color-Coherence-Vector
http://www.airccse.org/journal/jcsit/4612ijcsit15.pdf
http://www.airccse.org/journal/jcsit/4612ijcsit15.pdf
https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/
https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/
https://www.kdnuggets.com/decision-tree-algorithm-explained.html/
https://www.kdnuggets.com/decision-tree-algorithm-explained.html/

Bibliografia

[29] “Random Forest Algorithms: A Complete Guide | Built In.” [Online]. Disponível:
https://builtin.com/data-science/random-forest-algorithm

[30] B. S. Kusumo, A. Heryana, O. Mahendra, e H. F. Pardede, “Machine learning-
based for automatic detection of corn-plant diseases using image processing,” in
Proc. Informatics and its Applications (IC3INA) 2018 Int. Conf. Computer, Control,
Novembro 2018, pp. 93–97.

[31] D. G. Lowe, “Method and apparatus for identifying scale invariant features in
an image and use of same for locating an object in an image,” US patentus
US6 711 293B1, 2000.

[32] C. Tomasi, “Histograms of oriented gradients,” Computer Vision Sampler, pp. 1–6,
2012.

[33] E. Rublee, V. Rabaud, K. Konolige, e G. Bradski, “ORB: An efficient alternative to
SIFT or SURF,” in 2011 International Conference on Computer Vision. IEEE, 11
2011.

[34] J. D. S. Selda, R. M. R. Ellera, L. C. Cajayon, e N. B. Linsangan, “Plant identification
by image processing of leaf veins,” in Proceedings of the International Conference on
Imaging, Signal Processing and Communication - ICISPC 2017. ACM Press, 2017.

[35] Wikipedia, “Sensitivity and specificity,” Website, Janeiro 2020. [Online]. Disponível:
https://en.wikipedia.org/wiki/Sensitivity_and_specificity

[36] E. Mwebaze e G. Owomugisha, “Machine learning for plant disease incidence and
severity measurements from leaf images,” in Proc. 15th IEEE Int. Conf. Machine
Learning and Applications (ICMLA), Dezembro 2016, pp. 158–163.

[37] “1.4. Support Vector Machines.” [Online]. Disponível: https://scikit-learn/stable/
modules/svm.html

[38] “KNN Algorithm | What is KNN Algorithm | How does KNN Function,”
Abril 2021. [Online]. Disponível: https://www.analyticsvidhya.com/blog/2021/04/
simple-understanding-and-implementation-of-knn-algorithm/

[39] J. Brownlee, “How to Develop an Extra Trees Ensemble with
Python,” Abril 2020. [Online]. Disponível: https://machinelearningmastery.
com/extra-trees-ensemble-with-python/

76

https://builtin.com/data-science/random-forest-algorithm
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://scikit-learn/stable/modules/svm.html
https://scikit-learn/stable/modules/svm.html
https://www.analyticsvidhya.com/blog/2021/04/simple-understanding-and-implementation-of-knn-algorithm/
https://www.analyticsvidhya.com/blog/2021/04/simple-understanding-and-implementation-of-knn-algorithm/
https://machinelearningmastery.com/extra-trees-ensemble-with-python/
https://machinelearningmastery.com/extra-trees-ensemble-with-python/

Bibliografia

[40] R. P. Foundation, “Raspberry pi - about us,” Website, Janeiro 2020. [Online].
Disponível: https://www.raspberrypi.org/about/

[41] F. Jakjoud, A. Hatim, e A. Bouaaddi, “Deep learning application for plant diseases
detection,” in Proceedings of the 4th International Conference on Big Data and
Internet of Things. ACM, 10 2019.

[42] A. Kamilaris e F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,”
Computers and Electronics in Agriculture, vol. 147, pp. 70–90, 4 2018.

[43] “Vgg16 – convolutional network for classification and detection,” Website:, Janeiro
2020. [Online]. Disponível: https://neurohive.io/en/popular-networks/vgg16/

[44] “1.5. Stochastic Gradient Descent.” [Online]. Disponível: https://scikit-learn/
stable/modules/sgd.html

[45] R. Gylberth, “An Introduction to AdaGrad,” Maio 2018. [Online]. Disponível:
https://medium.com/konvergen/an-introduction-to-adagrad-f130ae871827

[46] “Root Mean Square Propagation - Andrea Perlato.” [Online]. Disponível:
https://www.andreaperlato.com/aipost/root-mean-square-propagation/

[47] neuralthreads, “Adadelta — Optimizer which was develo-
ped to eliminate the need for the learning rate,” Novem-
bro 2021. [Online]. Disponível: https://medium.com/@neuralthreads/
adadelta-optimizer-which-was-developed-to-eliminate-the-need-for-the-learning-rate-93e8f295abc7

[48] D. Majumdar, D. K. Kole, A. Chakraborty, e D. D. Majumder, “An integrated
digital image analysis system for detection, recognition and diagnosis of disease in
wheat leaves,” in Proceedings of the Third International Symposium on Women in
Computing and Informatics - WCI '15. ACM Press, 2015.

[49] A. Gupta, “Fuzzy C-Means Clustering (FCM) Algorithm in Machine Le-
arning,” Junho 2021. [Online]. Disponível: https://medium.com/geekculture/
fuzzy-c-means-clustering-fcm-algorithm-in-machine-learning-c2e51e586fff

[50] J. Krause, G. Sugita, K. Baek, e L. Lim, “WTPlant(what's that plant?),” in Pro-
ceedings of the 2018 ACM on International Conference on Multimedia Retrieval -
ICMR '18. ACM Press, 2018.

77

https://www.raspberrypi.org/about/
https://neurohive.io/en/popular-networks/vgg16/
https://scikit-learn/stable/modules/sgd.html
https://scikit-learn/stable/modules/sgd.html
https://medium.com/konvergen/an-introduction-to-adagrad-f130ae871827
https://www.andreaperlato.com/aipost/root-mean-square-propagation/
https://medium.com/@neuralthreads/adadelta-optimizer-which-was-developed-to-eliminate-the-need-for-the-learning-rate-93e8f295abc7
https://medium.com/@neuralthreads/adadelta-optimizer-which-was-developed-to-eliminate-the-need-for-the-learning-rate-93e8f295abc7
https://medium.com/geekculture/fuzzy-c-means-clustering-fcm-algorithm-in-machine-learning-c2e51e586fff
https://medium.com/geekculture/fuzzy-c-means-clustering-fcm-algorithm-in-machine-learning-c2e51e586fff

Bibliografia

[51] S. A. Pearline, V. S. Kumar, e S. Harini, “A study on plant recognition using con-
ventional image processing and deep learning approaches,” Journal of Intelligent &
Fuzzy Systems, vol. 36, n. 3, pp. 1997–2004, 3 2019.

[52] “UCI Machine Learning Repository: Folio Data Set.” [Online]. Disponível:
https://archive.ics.uci.edu/ml/datasets/Folio

[53] O. J. O. Söderkvist, “Computer vision classifcation of leaves from swedish trees,”
Website, Janeiro 2020. [Online]. Disponível: https://www.cvl.isy.liu.se/en/research/
datasets/swedish-leaf/

[54] “Flavia, A Leaf Recognition Algorithm for Plant Classification using PNN.”
[Online]. Disponível: http://flavia.sourceforge.net/

[55] “Python.org.” [Online]. Disponível: https://www.python.org/about/

[56] “Opencv (open source computer vision library),” Website, Janeiro 2020. [Online].
Disponível: https://opencv.org/about/

[57] “Keras: The python deep learning library,” Website:, Janeiro 2020. [Online].
Disponível: https://keras.io/

[58] “Theano is a python library that allows you to define, optimize, and evaluate
mathematical expressions involving multi-dimensional arrays efficiently,” Website:,
Janeiro 2020. [Online]. Disponível: http://deeplearning.net/software/theano/

[59] D. K. Sreekantha e Kavya A. M. , “Agricultural crop monitoring using iot - a study,”
in Proc. 11th Int. Conf. Intelligent Systems and Control (ISCO), Janeiro 2017, pp.
134–139.

[60] Wikipédia, “Wireless sensor network - wsn,” website, Janeiro 2020. [Online].
Disponível: https://en.wikipedia.org/wiki/Wireless_sensor_network

[61] zigbee alliance, “What is zigbee?” website, Janeiro 2020. [Online]. Disponível:
https://zigbeealliance.org/solution/zigbee/

[62] “Radio Frequency Identification (RFID).” [Online]. Disponível: https://www.
investopedia.com/terms/r/radio-frequency-identification-rfid.asp

[63] “General Packet Radio Service,” Novembro 2021, page Version ID: 1055785300. [On-
line]. Disponível: https://en.wikipedia.org/w/index.php?title=General_Packet_
Radio_Service&oldid=1055785300

78

https://archive.ics.uci.edu/ml/datasets/Folio
https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
http://flavia.sourceforge.net/
https://www.python.org/about/
https://opencv.org/about/
https://keras.io/
http://deeplearning.net/software/theano/
https://en.wikipedia.org/wiki/Wireless_sensor_network
https://zigbeealliance.org/solution/zigbee/
https://www.investopedia.com/terms/r/radio-frequency-identification-rfid.asp
https://www.investopedia.com/terms/r/radio-frequency-identification-rfid.asp
https://en.wikipedia.org/w/index.php?title=General_Packet_Radio_Service&oldid=1055785300
https://en.wikipedia.org/w/index.php?title=General_Packet_Radio_Service&oldid=1055785300

Bibliografia

[64] Wikipédia, “Wi-fi,” Website, Janeiro 2020. [Online]. Disponível: https:
//en.wikipedia.org/wiki/General_Packet_Radio_Service

[65] P. Tirelli, N. A. Borghese, F. Pedersini, G. Galassi, e R. Oberti, “Automatic moni-
toring of pest insects traps by zigbee-based wireless networking of image sensors,”
in Proc. IEEE Int. Instrumentation and Measurement Technology Conf, Maio 2011,
pp. 1–5.

[66] T. Sakamoto, A. A. Gitelson, A. L. Nguy-Robertson, T. J. Arkebauer, B. D.
Wardlow, A. E. Suyker, S. B. Verma, e M. Shibayama, “An alternative method
using digital cameras for continuous monitoring of crop status,” Agricultural
and Forest Meteorology, vol. 154-155, pp. 113–126, 2012. [Online]. Disponível:
https://www.sciencedirect.com/science/article/pii/S0168192311003133

[67] GISGeography, “What is NDVI (Normalized Difference Vegetation In-
dex)?” Maio 2017. [Online]. Disponível: https://gisgeography.com/
ndvi-normalized-difference-vegetation-index/

[68] Wikipédia, “Machine learning,” Website, Janeiro 2020. [Online]. Disponível:
https://en.wikipedia.org/wiki/Machine_learning

[69] ——, “Deep learning,” Website, Janeiro 2020. [Online]. Disponível: https:
//en.wikipedia.org/wiki/Deep_learning

[70] “System-on-a-chip,” Maio 2020, page Version ID: 58370125. [Online]. Disponível:
https://pt.wikipedia.org/w/index.php?title=System-on-a-chip&oldid=58370125

[71] C. Hernitscheck e F. Europe, “Designing for Ultra-Low-Power with MSP430,”
MSP430 Advanced Tehnical Conference 2006, p. 37, 2006. [Online]. Disponível:
https://www.ti.com/lit/ml/slap124/slap124.pdf

[72] “Network Time Protocol,” Abril 2020, page Version ID: 58071828. [Online]. Disponí-
vel: https://pt.wikipedia.org/w/index.php?title=Network_Time_Protocol&oldid=
58071828

[73] “Single-board computer,” Abril 2021, page Version ID: 1018888075. [Online].
Disponível: https://en.wikipedia.org/w/index.php?title=Single-board_computer&
oldid=1018888075

79

https://en.wikipedia.org/wiki/General_Packet_Radio_Service
https://en.wikipedia.org/wiki/General_Packet_Radio_Service
https://www.sciencedirect.com/science/article/pii/S0168192311003133
https://gisgeography.com/ndvi-normalized-difference-vegetation-index/
https://gisgeography.com/ndvi-normalized-difference-vegetation-index/
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Deep_learning
https://pt.wikipedia.org/w/index.php?title=System-on-a-chip&oldid=58370125
https://www.ti.com/lit/ml/slap124/slap124.pdf
https://pt.wikipedia.org/w/index.php?title=Network_Time_Protocol&oldid=58071828
https://pt.wikipedia.org/w/index.php?title=Network_Time_Protocol&oldid=58071828
https://en.wikipedia.org/w/index.php?title=Single-board_computer&oldid=1018888075
https://en.wikipedia.org/w/index.php?title=Single-board_computer&oldid=1018888075

Bibliografia

[74] “World Wide Web,” Outubro 2021, page Version ID: 1048690604. [Online]. Dis-
ponível: https://en.wikipedia.org/w/index.php?title=World_Wide_Web&oldid=
1048690604

[75] “CoAP — Constrained Application Protocol | Overview.” [Online]. Disponível:
https://coap.technology/

[76] “MQTT - The Standard for IoT Messaging.” [Online]. Disponível: https://mqtt.org/

[77] “Base de Dados NoSQL - O Que É NoSQL? | Microsoft Azure.” [Online]. Disponível:
https://azure.microsoft.com/pt-pt/overview/nosql-database/

[78] “MSP430G2553 data sheet, product information and support | TI.com.” [Online].
Disponível: https://www.ti.com/product/MSP430G2553

[79] Wikipédia, “Wi-fi,” published: Website. [Online]. Disponível: https://en.wikipedia.
org/wiki/General_Packet_Radio_Service

[80] “ESP-01.” [Online]. Disponível: http://www.ai-thinker.com/pro_view-60.html

[81] “SHT30 Sensor de Temperatura e Humidade Digital
i2c.” [Online]. Disponível: https://www.botnroll.com/pt/temperatura/
4067-sht30-sensor-de-temperatura-e-humidade-digital-i2c.html

[82] “TSL2561 Luminosity Sensor Hookup Guide - learn.sparkfun.com.” [Online]. Dispo-
nível: https://learn.sparkfun.com/tutorials/tsl2561-luminosity-sensor-hookup-guide

[83] “One wire,” Julho 2019, page Version ID: 55719179. [Online]. Disponível:
https://pt.wikipedia.org/w/index.php?title=One_wire&oldid=55719179

[84] “DS18B20 Waterproof Temperature Sensor.” [Online]. Disponível: https://www.
seeedstudio.com/DS18B20-Temperature-Sensor-Waterproof-Probe-p-4283.html

[85] “Grove - Capacitive Moisture Sensor (Corrosion-Resistant) - Seeed Wiki.”
[Online]. Disponível: https://wiki.seeedstudio.com/Grove-Capacitive_Moisture_
Sensor-Corrosion-Resistant/

[86] “Load Sensor - 50kg (Generic) - SEN-10245 - SparkFun Electronics.” [Online].
Disponível: https://www.sparkfun.com/products/10245

[87] “Avia Semiconductor (Xiamen) Ltd.-HX711.” [Online]. Disponível: http://en.aviaic.
com/detail/730856.html

80

https://en.wikipedia.org/w/index.php?title=World_Wide_Web&oldid=1048690604
https://en.wikipedia.org/w/index.php?title=World_Wide_Web&oldid=1048690604
https://coap.technology/
https://mqtt.org/
https://azure.microsoft.com/pt-pt/overview/nosql-database/
https://www.ti.com/product/MSP430G2553
https://en.wikipedia.org/wiki/General_Packet_Radio_Service
https://en.wikipedia.org/wiki/General_Packet_Radio_Service
http://www.ai-thinker.com/pro_view-60.html
https://www.botnroll.com/pt/temperatura/4067-sht30-sensor-de-temperatura-e-humidade-digital-i2c.html
https://www.botnroll.com/pt/temperatura/4067-sht30-sensor-de-temperatura-e-humidade-digital-i2c.html
https://learn.sparkfun.com/tutorials/tsl2561-luminosity-sensor-hookup-guide
https://pt.wikipedia.org/w/index.php?title=One_wire&oldid=55719179
https://www.seeedstudio.com/DS18B20-Temperature-Sensor-Waterproof-Probe-p-4283.html
https://www.seeedstudio.com/DS18B20-Temperature-Sensor-Waterproof-Probe-p-4283.html
https://wiki.seeedstudio.com/Grove-Capacitive_Moisture_Sensor-Corrosion-Resistant/
https://wiki.seeedstudio.com/Grove-Capacitive_Moisture_Sensor-Corrosion-Resistant/
https://www.sparkfun.com/products/10245
http://en.aviaic.com/detail/730856.html
http://en.aviaic.com/detail/730856.html

Bibliografia

[88] “SparkFun Load Cell Amplifier - HX711 - SEN-13879 - SparkFun Electronics.”
[Online]. Disponível: https://www.sparkfun.com/products/13879

[89] “Load Cell - 10kg, Straight Bar (TAL220) - SEN-13329 - SparkFun Electronics.”
[Online]. Disponível: https://www.sparkfun.com/products/13329

[90] “HS-422 Deluxe Standard Servo | HITEC RCD USA.” [Online]. Disponível:
https://hitecrcd.com/products/servos/analog/sport-2/hs-422/product

[91] “Small Solar Panel 80x100mm 1W.” [Online]. Disponível: https://www.seeedstudio.
com/1W-Solar-Panel-80X100.html

[92] “Placa de carregamento para bateria de lítio 1A (TP4056) - Micro-USB.” [Online].
Disponível: https://mauser.pt/catalog/product_info.php?products_id=096-8206

[93] “BU-204: How do Lithium Batteries Work?” Setembro 2010. [Online]. Disponível:
https://batteryuniversity.com/article/bu-204-how-do-lithium-batteries-work

[94] “Samsung SDI Small-Sized Li-ion Battery - Index | Samsung SDI.” [Online].
Disponível: https://www.samsungsdi.com/lithium-ion-battery/index.html

[95] “MSP-EXP430G2ET Development kit | TI.com.” [Online]. Disponível: https:
//www.ti.com/tool/MSP-EXP430G2ET

[96] “CCSTUDIO IDE, configuration, compiler or debugger | TI.com.” [Online].
Disponível: https://www.ti.com/tool/CCSTUDIO

[97] “ESP8266 PROG | Joy-IT.” [Online]. Disponível: https://joy-it.net/en/products/
SBC-ESP8266-PROG

[98] “JSON.” [Online]. Disponível: https://www.json.org/json-en.html

[99] R. P. Ltd, “Buy a Raspberry Pi Camera Module 2.” [Online]. Disponível:
https://www.raspberrypi.com/products/camera-module-v2/

[100] “Arquitetura ARM,” Novembro 2020, page Version ID: 59822910. [Online]. Dis-
ponível: https://pt.wikipedia.org/w/index.php?title=Arquitetura_ARM&oldid=
59822910

[101] “MIPI Camera Serial Interface 2 (MIPI CSI-2),” Janeiro 2017. [Online]. Disponível:
https://www.mipi.org/specifications/csi-2

81

https://www.sparkfun.com/products/13879
https://www.sparkfun.com/products/13329
https://hitecrcd.com/products/servos/analog/sport-2/hs-422/product
https://www.seeedstudio.com/1W-Solar-Panel-80X100.html
https://www.seeedstudio.com/1W-Solar-Panel-80X100.html
https://mauser.pt/catalog/product_info.php?products_id=096-8206
https://batteryuniversity.com/article/bu-204-how-do-lithium-batteries-work
https://www.samsungsdi.com/lithium-ion-battery/index.html
https://www.ti.com/tool/MSP-EXP430G2ET
https://www.ti.com/tool/MSP-EXP430G2ET
https://www.ti.com/tool/CCSTUDIO
https://joy-it.net/en/products/SBC-ESP8266-PROG
https://joy-it.net/en/products/SBC-ESP8266-PROG
https://www.json.org/json-en.html
https://www.raspberrypi.com/products/camera-module-v2/
https://pt.wikipedia.org/w/index.php?title=Arquitetura_ARM&oldid=59822910
https://pt.wikipedia.org/w/index.php?title=Arquitetura_ARM&oldid=59822910
https://www.mipi.org/specifications/csi-2

Bibliografia

[102] R. P. Ltd, “Buy a Raspberry Pi 3 Model B+.” [Online]. Disponível:
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/

[103] “Lm2577 dc-dc voltage step-up (boost) module.” [Online]. Disponível: http:
//www.velleman.eu/products/view/?id=435562&country=pt&lang=pt

[104] R. P. Ltd, “Raspberry Pi OS.” [Online]. Disponível: https://www.raspberrypi.com/
software/

[105] R. Light, “paho-mqtt: MQTT version 5.0/3.1.1 client class.” [Online]. Disponível:
http://eclipse.org/paho

[106] D. Jones, “picamera: A pure Python interface for the Raspberry Pi camera module.”
[Online]. Disponível: http://picamera.readthedocs.io/

[107] C. Liechti, “pyserial: Python Serial Port Extension.” [Online]. Disponível:
https://github.com/pyserial/pyserial

[108] “How to Setup Passwordless SSH Login,” Junho 2018, section: post. [Online].
Disponível: https://linuxize.com/post/how-to-setup-passwordless-ssh-login/

[109] “Controle Numérico Computadorizado,” Julho 2021, page Version ID: 61695318.
[Online]. Disponível: https://pt.wikipedia.org/w/index.php?title=Controle_Num%
C3%A9rico_Computadorizado&oldid=61695318

[110] “Código G,” Julho 2021, page Version ID: 61687211. [Online]. Disponível:
https://pt.wikipedia.org/w/index.php?title=C%C3%B3digo_G&oldid=61687211

[111] “FlatCAM: PCB Prototyping CAD/CAM.” [Online]. Disponível: http://flatcam.
org/

[112] “Virtual Machine.” [Online]. Disponível: https://www.vmware.com/topics/glossary/
content/virtual-machine

[113] “Ubuntu Server.” [Online]. Disponível: https://ubuntu.com/download/server

[114] “What is a Container? | App Containerization | Docker.” [Online]. Disponível:
https://www.docker.com/resources/what-container

[115] “Eclipse Mosquitto,” Janeiro 2018. [Online]. Disponível: https://mosquitto.org/

[116] “Node-RED.” [Online]. Disponível: https://nodered.org/

82

https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
http://www.velleman.eu/products/view/?id=435562&country=pt&lang=pt
http://www.velleman.eu/products/view/?id=435562&country=pt&lang=pt
https://www.raspberrypi.com/software/
https://www.raspberrypi.com/software/
http://eclipse.org/paho
http://picamera.readthedocs.io/
https://github.com/pyserial/pyserial
https://linuxize.com/post/how-to-setup-passwordless-ssh-login/
https://pt.wikipedia.org/w/index.php?title=Controle_Num%C3%A9rico_Computadorizado&oldid=61695318
https://pt.wikipedia.org/w/index.php?title=Controle_Num%C3%A9rico_Computadorizado&oldid=61695318
https://pt.wikipedia.org/w/index.php?title=C%C3%B3digo_G&oldid=61687211
http://flatcam.org/
http://flatcam.org/
https://www.vmware.com/topics/glossary/content/virtual-machine
https://www.vmware.com/topics/glossary/content/virtual-machine
https://ubuntu.com/download/server
https://www.docker.com/resources/what-container
https://mosquitto.org/
https://nodered.org/

Bibliografia

[117] Node.js, “nodejs.” [Online]. Disponível: https://nodejs.org/en/about/

[118] “mongoDB - The most popular database for modern apps.” [Online]. Disponível:
https://www.mongodb.com

[119] “atmoz/sftp Dockerfile.” [Online]. Disponível: https://hub.docker.com/r/atmoz/
sftp/dockerfile

[120] “TensorFlow.” [Online]. Disponível: https://www.tensorflow.org/?hl=pt

[121] steve, “How MQTT Works -Beginners Guide,” Junho 2018. [Online]. Disponível:
http://www.steves-internet-guide.com/mqtt-works/

[122] “Learn JavaScript basics with our free JavaScript tutorials for programmers.”
[Online]. Disponível: https://www.javascript.com/about

[123] “Cluster: conceito e características.” [Online]. Disponível: https://www.infowester.
com/cluster.php

[124] “SSH Secure Shell home page, maintained by SSH protocol inventor Tatu
Ylonen. SSH clients, servers, tutorials, how-tos.” [Online]. Disponível: https:
//www.ssh.com/academy/ssh

[125] “RSA (sistema criptográfico),” Maio 2021, page Version ID: 61145079. [Online].
Disponível: https://pt.wikipedia.org/w/index.php?title=RSA_(sistema_criptogr%
C3%A1fico)&oldid=61145079

[126] “KiCad EDA.” [Online]. Disponível: https://www.kicad.org/

[127] “IP ratings | IEC.” [Online]. Disponível: https://www.iec.ch/ip-ratings

[128] “What are Progressive Web Apps?” [Online]. Disponível: https://web.dev/
what-are-pwas/

[129] “FileZilla - The free FTP solution.” [Online]. Disponível: https://filezilla-project.org/

83

https://nodejs.org/en/about/
https://www.mongodb.com
https://hub.docker.com/r/atmoz/sftp/dockerfile
https://hub.docker.com/r/atmoz/sftp/dockerfile
https://www.tensorflow.org/?hl=pt
http://www.steves-internet-guide.com/mqtt-works/
https://www.javascript.com/about
https://www.infowester.com/cluster.php
https://www.infowester.com/cluster.php
https://www.ssh.com/academy/ssh
https://www.ssh.com/academy/ssh
https://pt.wikipedia.org/w/index.php?title=RSA_(sistema_criptogr%C3%A1fico)&oldid=61145079
https://pt.wikipedia.org/w/index.php?title=RSA_(sistema_criptogr%C3%A1fico)&oldid=61145079
https://www.kicad.org/
https://www.iec.ch/ip-ratings
https://web.dev/what-are-pwas/
https://web.dev/what-are-pwas/
https://filezilla-project.org/

Apêndices

85

Apêndice I

Código desenvolvido

I.1 MCU Módulo lisímetro

1 /∗ LISIMETRO − MIOT1819
2

3 ∗
4 ∗ MSP430G2553
5 ∗ −−−−−−−−−−−−−−−−−
6 ∗ / | \ | XIN|−
7 ∗ | | |
8 ∗ −−|RST XOUT|−
9 ∗ | |

10 ∗ <P ON>−−−|P1 .0 P2.0|−−<ONE WIRE> STSx
11 ∗ | |
12 ∗ <UART RX>−|P1 .1 P2.1|−−<I2C−SCL> |
13 ∗ | | | STA / SHA / SLA
14 ∗ <UART TX>−|P1 .2 P2.2|−−<I2C−SDL> |
15 ∗ | |
16 ∗ <SHS 1>−−|P1 .3 P2.3|−−<HX711−DATA> |
17 ∗ | | | SPL / SPR
18 ∗ <SHS 2>−−|P1 .4 P2.4|−−<HX711−CLK> |
19 ∗ | |
20 ∗ <SHS 3>−−|P1 .5 P2.5|−−<PWM> VR
21 ∗ | |
22 ∗ <SVB>−−|P1 .6 P2.6|−−<XTAL>
23 ∗ | |
24 ∗ <SW>−−|P1 .7 P2.7|−−<XTAL>
25 ∗ | |
26 ∗ −−−−−−−−−−−−−−−−−

87

I. Código desenvolvido

27 ∗/
28

29

30 #include <msp430 . h>
31 #include <s t d i n t . h>
32 #include ”CDC. h”
33 #include ” de lay . h”
34 #include ” ds18b20 . h”
35 #include ”hx711 . h”
36 #include ” swi2c_master . h”
37 #include ”TSL2561 . h”
38 #include ”SHT3X.H”
39 #include ”SERVO. h”
40

41 const unsigned int pool ing_time = 600 ; // Pool ing time in seconds
42

43 const unsigned int t_startup = 3 ; // Time to s t a r t ESP in seconds
44 const unsigned int t_drain = 15 ; // Drain Time in seconds
45

46 unsigned int seconds ; // Seconds counter
47

48 unsigned int OPEN_VAL = 135 ;
49 unsigned int CLOSE_VAL = 45 ;
50

51

52 uint8_t addr1 [8]={0 x28 , 0 xC0 , 0 xB3 , 0 xE2 , 0 x08 , 0 x00 , 0 x00 , 0xEB} ; //ID
SHS1

53 uint8_t addr2 [8]={0 x28 , 0 x10 , 0xFA,0 xE3 , 0 x08 , 0 x00 , 0 x00 , 0xBA} ; //ID
SHS2

54 uint8_t addr3 [8]={0 x28 , 0xCF,0 x86 , 0 xE2 , 0 x08 , 0 x00 , 0 x00 , 0 x99 } ; //ID
SHS3

55

56

57 stat ic const unsigned int ID = 1901 ; // ID do Lis imetro
58 f loat STA = 0 ; // Sensor Temperatura Ambiente [ÂºC]
59 f loat SHA = 0 ; // Sensor Humidade Ambiente [%]
60 unsigned int SL_1 = 0 ; // Sensor Luz v i s i v e l (V) + In f ra Vermerlho (IR

)
61 unsigned int SL_2 = 0 ; // Sensor Luz In f ra Vermerlho (IR)
62 f loat STS_1 = 0 ; // Sensor Temperatura Solo 1 [ºC]
63 f loat STS_2 = 0 ; // Sensor Temperatura Solo 2 [ºC]
64 f loat STS_3 = 0 ; // Sensor Temperatura Solo 3 [ºC]
65 unsigned int SH_1 = 0 ; // Sensor Humidity Solo 1 [%]

88

I.1. MCU Módulo lisímetro

66 unsigned int SH_2 = 0 ; // Sensor Humidity Solo 2 [%]
67 unsigned int SH_3 = 0 ; // Sensor Humidade Solo 3 [%]
68 unsigned int SPL = 0 ; // Sensor Peso Lis imetro [g]
69 unsigned int SPR_I = 0 ; // Sensor Peso Residuos [g]
70 unsigned int SPR_F = 0 ; // Sensor Peso Residuos [g]
71 unsigned int SPR = 0 ; // Sensor Peso Residuos [g]
72 unsigned int SVB = 0 ; // Sensor Voltagem Bater ia [mV]
73

74 unsigned int arraySamples [4] ; // ADC samples array
75

76

77 void GPIO_Init (void) ;
78 void BCM_Init(void) ;
79 void TIMER_Init (void) ;
80 void USCI_A0_Init (void) ;
81 void ADC10_Init (void) ;
82 void ADC10_StartSampling (void) ;
83 void sendData (void) ;
84

85

86 void main (void)
87 {
88 WDTCTL = WDTPW | WDTHOLD; // s top watchdog t imer
89

90 seconds = pool ing_time − 1 ;
91

92 GPIO_Init () ;
93 BCM_Init () ;
94 TIMER_Init () ;
95 USCI_A0_Init () ;
96 ADC10_Init () ;
97 ADC10_StartSampling () ;
98

99 _enable_interrupts () ;
100

101 while (1)
102 {
103 i f (seconds == pool ing_time) //
104 {
105 P1OUT |= BIT0 ; // Power ON
106

107 seconds = 0 ;
108 while (seconds < t_startup) ;

89

I. Código desenvolvido

109

110 SWI2C_initI2C () ;
111

112 //∗∗HX711∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
113 HX711_init () ;
114 SPL = get_Weight (2) ;
115 SPR_I = get_Weight (1) ;
116

117 //∗SHT3x∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
118 init_SHT3X () ;
119 i f (read_SHT3X ())
120 {
121 STA = get_Temp () ;
122 SHA = get_Hum() ;
123 }
124

125 //∗TSL2561∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
126 init_TSL2561 () ;
127 SL_2 = read_TSL2561_CH1 () ;
128 SL_1 = read_TSL2561_CH0 () ;
129

130 //∗∗DB18B20∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
131 STS_1 = get_temp_ad (addr1) ;
132 STS_2 = get_temp_ad (addr2) ;
133 STS_3 = get_temp_ad (addr3) ;
134

135 //∗ADC∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
136 ADC10_StartSampling () ;
137 SH_1 = arraySamples [1] ;
138 SH_2 = arraySamples [2] ;
139 SH_3 = arraySamples [3] ;
140 SVB = arraySamples [0] ;
141

142 init_SERVO () ;
143 set_SERVO(OPEN_VAL) ;
144

145 seconds = 0 ;
146 while (seconds < t_drain) ;
147

148 set_SERVO(CLOSE_VAL) ;
149

150 delay_ms (1000) ; // Time to c l o s e v a l v e
151

90

I.1. MCU Módulo lisímetro

152 HX711_init () ;
153 SPR_F = get_Weight (1) ;
154

155 i f (SPR_I > SPR_F) SPR = SPR_I − SPR_F;
156 else SPR = 0 ;
157

158 delay_ms (500) ;
159

160 sendData () ;
161

162 delay_ms (5000) ; // Time to send data
163

164 P1OUT &= ~BIT0 ; // Power OFF
165 }
166 __low_power_mode_3 () ;
167 }
168 }
169

170

171

172

173 void sendData (void)
174 {
175 p_ui (ID) ; ec (” ”) ;
176 p r i n t f l o a t (STA) ; ec (” ”) ;
177 p r i n t f l o a t (SHA) ; ec (” ”) ;
178 p_ui (SL_1) ; ec (” ”) ;
179 p_ui (SL_2) ; ec (” ”) ;
180 p r i n t f l o a t (STS_1) ; ec (” ”) ;
181 p r i n t f l o a t (STS_2) ; ec (” ”) ;
182 p r i n t f l o a t (STS_3) ; ec (” ”) ;
183 p_ui (SH_1) ; ec (” ”) ;
184 p_ui (SH_2) ; ec (” ”) ;
185 p_ui (SH_3) ; ec (” ”) ;
186 p_ui (SVB) ; ec (” ”) ;
187 p_ui (SPL) ; ec (” ”) ;
188 p_ui (SPR) ; ec (” ”) ;
189 LF_() ;
190 CR_() ;
191 }
192

193 void GPIO_Init ()
194 {

91

I. Código desenvolvido

195 P1OUT = (0 x00) ;
196 // P1DIR = (0xFF) ;
197 P1DIR = (BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0) ; // P1DIR

= (0xF7) ; BIT7−>IN
198 // USCI :
199 P1SEL |= (BIT2 | BIT1) ; // UCA0TXD , UCA0RXD
200 P1SEL2 |= (BIT2 | BIT1) ; // UCA0TXD , UCA0RXD
201

202 P1REN |= BIT7 ; // enab l e pu l l −up/ pu l l −down r e s i s t o r
203 P1OUT |= BIT7 ; // s e l e c t pu l l −up r e s i s t o r
204

205 P1IES |= BIT7 ; // s e l e c t edge i n t e r r u p t high−>low t r a n s i t i o n
206 P1IFG = 0x00 ; // c l e a r P1IFG s ince w r i t i n g to P1OUT, P1DIR, P2OUT

, or P2DIR can r e s u l t in s e t t i n g the corresponding P1IFG
207 // or P2IFG f l a g s . (s l au144 j pg .331)
208 P1IE |= BIT7 ; // enab l e i n t e r r u p t on P1 .7
209 }
210

211

212 void BCM_Init ()
213 {
214 DCOCTL = CALDCO_8MHZ; // DCO frequency s e l e c t and Modulator

s e l e c t i o n :
215 // are s e t wi th f a c t o r y c a l i b r a t e d va lue
216 BCSCTL1 = XT2OFF // XT2 o f f
217 | CALBC1_8MHZ // Range s e l e c t : f a c t o r y va lue f o r 8MHz
218 | DIVA_0; // ACLK Div ider : 0−>/1, 1_>/2, 2−>/4, 3−>/8
219

220 BCSCTL2 = SELM_0 // S e l e c t the MCLK source : 0−>DCOCLK, 1−>
DCOCLK, 2−> XT2CLK when XT2, 3−>LFXT1CLK or VLOCLK

221 | DIVM_0 // MCLK Div ider : 0−>/1, 1_>/2, 2−>/4, 3−>/8
222 | DIVS_0 ; // SMCLK Div ider : 0−>/1, 1_>/2, 2−>/4,

3−>/8:
223

224 BCSCTL3 = LFXT1S_2 ; // Low−frequency c l o c k s e l e c t and LFXT1
range : 0−>Crys ta l 32768Hz , 2−>VLOCLK, 3−>Ext CLK

225 }
226

227

228 void USCI_A0_Init (void)
229 {
230 // UART Mode : 9600 8N1
231 UCA0CTL1 = UCSSEL_2; // USCI c l o c k source s e l e c t : SMCLK

92

I.1. MCU Módulo lisímetro

232 // From Table 36.4 in s l au144 j :
233 // BRCLK Frequency (Hz) Baud Rate UCBRx UCBRSx UCBRFx
234 // 8 000 000 9600 833 2 0
235 UCA0BR0 = 0x41 ; // UCBRx = 833 = 0x341
236 UCA0BR1 = 0x03 ;
237 UCA0MCTL = UCBRS_2;
238 // USCI r e s e t r e l e a s e d f o r opera t ion :
239 UCA0CTL1 &= ~ UCSWRST;
240 IE2 |= UCA0RXIE; // USCI_A0 r e c e i v e i n t e r r u p t enab l e
241 }
242

243 #pragma vec to r = USCIAB0RX_VECTOR
244 __interrupt void USCIA0RX_ISR(void)
245 {
246 while (! (IFG2 & UCA0TXIFG)) ;
247 UCA0TXBUF = UCA0RXBUF;
248 }
249

250

251 void TIMER_Init ()
252 {
253 // Timer A0 s e t t i n g s f o r 1 s counter
254 TA0CCTL0 = CCIE ; // Capture/Compare I n t e r r u p t Enable
255 TA0CTL = TASSEL_1 // Clock source = 0−>TACLK, 1−>ACLK, 2−>SMCLK,

3−>INCLK
256 | MC_1 // Mode c o n t r o l = 1−>UP / 2−>CONTINUOS / 3−>UP/

DOWN
257 | ID_0 ; // Div ider = 0−>/1, 1−>/2, 2−>/4, 3−>/8
258 TA0CCR0 = 10350 ; // Compare va lue : 32768 f o r 32768Hz c r y s t a l ,

10000 f o r 10KHz VLOCLK (10350 a f t e r 1 s c a l i b r a t i o n)
259 // Timer A1 s e t t i n g s f o r PWM servo c o n t r o l
260 TA1CTL = TASSEL_2 // Clock source = 0−>TACLK, 1−>ACLK, 2−>SMCLK,

3−>INCLK
261 | TACLR // Timer_A1 c l e a r
262 | MC_1 // Mode c o n t r o l = 1−>UP / 2−>CONTINUOS / 3−>UP/

DOWN
263 | ID_3 ; // Div ider = 0−>/1, 1−>/2, 2−>/4, 3−>/8
264 TA1CCR0 = 20000 ; // Capture and Compare : 20000=> F=50Hz , T=20ms
265 TA1CCTL2 |= OUTMOD_7; // Output Mode : 7−> Reset / Set
266 }
267

268

269 #pragma vec to r = TIMER0_A0_VECTOR

93

I. Código desenvolvido

270 __interrupt void TIMER0_A0_ISR(void)
271 {
272 ++ seconds ;
273 __low_power_mode_off_on_exit () ;
274 }
275

276

277 #pragma vec to r = PORT1_VECTOR
278 __interrupt void Port1_ISR (void)
279 {
280 i f (P1IFG & BIT7) // sw i t ch pres sed
281 {
282 seconds = pool ing_time − 1 ;
283 }
284 P1IFG &= ~BIT7 ; // c l e a r i n t e r r u p t f l a g o f P1 .3
285 }
286

287

288 void ADC10_Init (void)
289 {
290 // ADC10 Contro l Reg i s t e r 0 :
291 ADC10CTL0 = SREF_1 // S e l e c t r e f e r ence : VR+ = VREF+ and VR− =

VSS
292 | ADC10SHT_0 // ADC10 sample−and−ho ld time : 4 ï¿½

ADC10CLKs
293 | ADC10SR // ADC10 sampling ra t e : Reference b u f f e r

suppor t s up
294 // to ~50 ksps
295 | REFBURST // Reference b u f f e r on only during
296 // sample−and−convers ion
297 | MSC // Mu l t i p l e sample and convers ion
298 | REF2_5V // Reference−genera tor v o l t a g e 2.5V
299 | REFON // Reference genera tor on : V_REF+ take s 30

us to
300 // s e t t l e (s l au144 j pg . 38)
301 | ADC10ON // ADC10 on
302 | ADC10IE ; // ADC10 i n t e r r u p t enab l e
303

304 // ADC10 Contro l Reg i s t e r 1 :
305 ADC10CTL1 = INCH_6 // Input channel s e l e c t i o n : A6−A5−A4−A3
306 | SHS_0 // Sample−and ho ld source s e l e c t :
307 | ADC10DIV_3 // ADC10 c l o c k d i v i d e r : /4
308 | ADC10SSEL_0 // ADC10 c l o c k source s e l e c t : ADC10OSC − 0

94

I.1. MCU Módulo lisímetro

309 | CONSEQ_1; // Conversion sequence mode s e l e c t :
310 // Sequence−of−channe l s (A7 − A6 − A5 −

A4)
311

312

313 // Analog (Input) Enable Contro l Reg i s t e r 0 :
314 ADC10AE0 |= BIT3
315 | BIT4 // ADC10 analog enab l e : A7 on P1 .7
316 | BIT5 // ADC10 analog enab l e : A6 on P1 .6
317 | BIT6 ; //
318 // ADC10 data t r a n s f e r c o n t r o l r e g i s t e r 1 :
319 ADC10DTC1 = 4 ; // Define the number o f t r a n s f e r s : 4 va l u e s
320 }
321

322

323 void ADC10_StartSampling (void)
324 {
325 // wh i l e (ADC10CTL1 & ADC10BUSY) ; // Wait i f ADC10 core i s a c t i v e
326 // ADC10 data t r a n s f e r s t a r t address :
327 ADC10SA = (unsigned int) arraySamples ; // ADC10 s t a r t address
328 ADC10CTL0 |= ENC // Enable convers ion
329 | ADC10SC;
330 delay_ms (1) ;
331 }
332

333 #pragma vec to r = ADC10_VECTOR
334 __interrupt void ADC10_ISR(void)
335 {
336 ADC10CTL0 &= ~ENC;
337 __low_power_mode_off_on_exit () ;
338 }

Listagem I.1: Código do programa principal main.c (MCU Módulo lisímetro).

1 /∗
2 ∗ TSL2561 . h
3 ∗
4 ∗ Created on : 07/10/2019
5 ∗ Author : Car los Almeida
6 ∗/
7

8 #ifndef TSL2561_H_
9 #define TSL2561_H_

95

I. Código desenvolvido

10

11 #include <msp430 . h>
12 #include <stdboo l . h>
13 #include <s t d i n t . h>
14

15 void init_TSL2561 () ;
16 unsigned int read_TSL2561_CH0 () ;
17 unsigned int read_TSL2561_CH1 () ;
18

19 SWI2C_I2CTransaction TSL2561 ;
20

21 uint8_t WR_Buffer [2] ;
22 uint8_t RD_Buffer [6] ;
23

24 void init_TSL2561 ()
25 {
26 TSL2561 . address = 0x39 ;
27 WR_Buffer [0] = 0x80 ; // CMD
28 WR_Buffer [1] = 0x03 ; // DATA
29 TSL2561 . wr i t eBu f f e r = WR_Buffer ;
30 TSL2561 . numWriteBytes = 2 ;
31 SWI2C_performI2CTransaction(&TSL2561) ;
32 delay_ms (150) ;
33 SWI2C_performI2CTransaction(&TSL2561) ;
34 delay_ms (150) ;
35

36 TSL2561 . address = 0x39 ;
37 WR_Buffer [0] = 0x81 ; // CMD − Set up Timing Reg i s t e r
38 WR_Buffer [1] = 0x02 ; // DATA s e t gain 1x i n t e g r a t i o n time 402ms

(pág . 20)
39 TSL2561 . wr i t eBu f f e r = WR_Buffer ;
40 TSL2561 . numWriteBytes = 2 ;
41 SWI2C_performI2CTransaction(&TSL2561) ;
42 delay_ms (150) ;
43 SWI2C_performI2CTransaction(&TSL2561) ;
44 delay_ms (150) ;
45 }
46

47 unsigned int read_TSL2561_CH0 ()
48 {
49 TSL2561 . address = 0x39 ;
50 WR_Buffer [0] = 0xAC; // CMD Read Word
51 TSL2561 . wr i t eBu f f e r = WR_Buffer ;

96

I.1. MCU Módulo lisímetro

52 TSL2561 . numWriteBytes = 1 ;
53 TSL2561 . numReadBytes = 2 ;
54 TSL2561 . r eadBuf f e r = RD_Buffer ;
55 SWI2C_performI2CTransaction(&TSL2561) ;
56 delay_ms (150) ;
57 SWI2C_performI2CTransaction(&TSL2561) ;
58 delay_ms (150) ;
59 return (256∗ RD_Buffer [1]+ RD_Buffer [0]) ;
60 }
61

62

63 unsigned int read_TSL2561_CH1 ()
64 {
65 TSL2561 . address = 0x39 ;
66 WR_Buffer [0] = 0xAE; // CMD Read Word
67 TSL2561 . wr i t eBu f f e r = WR_Buffer ;
68 TSL2561 . numWriteBytes = 1 ;
69 TSL2561 . numReadBytes = 2 ;
70 TSL2561 . r eadBuf f e r = RD_Buffer ;
71 SWI2C_performI2CTransaction(&TSL2561) ;
72 delay_ms (150) ;
73 SWI2C_performI2CTransaction(&TSL2561) ;
74 delay_ms (150) ;
75 return (256∗ RD_Buffer [1]+ RD_Buffer [0]) ;
76 }
77

78 #endif /∗ TSL2561_H_ ∗/

Listagem I.2: Código CDC.c (MCU Módulo lisímetro).

1 #ifndef DELAY_H_
2 #define DELAY_H_
3

4 void delay_ms (unsigned int ms) ;
5 void delay_us (unsigned int us) ;
6

7

8 void delay_us (unsigned int us)
9 {

10 while (us)
11 {
12 __delay_cycles (8) ; // 1 f o r 1 Mhz s e t 16 f o r 16 MHz
13 us−−;

97

I. Código desenvolvido

14 }
15 }
16

17 void delay_ms (unsigned int ms)
18 {
19 while (ms)
20 {
21 __delay_cycles (8000) ; // 1000 f o r 1MHz and 16000 f o r 16MHz
22 ms−−;
23 }
24 }
25

26 #endif /∗ #e n d i f DELAY_H_ ∗/

Listagem I.3: Código delay.h (MCU Módulo lisímetro).

1 /###
2 // h t t p s ://www. maximintegrated . com/en/app−notes / index . mvp/ id /187
3

4 #include <msp430g2553 . h>
5 #include <s t d i o . h>
6 #include <s t d i n t . h>
7

8 #include ” ds18b20 . h”
9

10

11

12 f loat c e l s i u s [4] ;
13 uint8_t data [1 2] ;
14 uint8_t i ;
15

16 //###
17 void ow_portsetup () {
18 OWPORTDIR |= OWPORTPIN;
19 OWPORTOUT |= OWPORTPIN;
20 OWPORTREN |= OWPORTPIN;
21 }
22

23

24 //###
25 void s e l e c t (uint8_t id [8]) {
26 uint8_t i ;
27 ow_write_byte (0 x55) ;

98

I.1. MCU Módulo lisímetro

28 for (i =0; i <8; i++) ow_write_byte (id [i]) ;
29 }
30

31 //###
32

33 /// @return : 0 i f ok
34 int ow_reset ()
35 {
36 OW_LO
37 delay_us (480) ; // 480 us minimum
38 OW_RLS
39 delay_us (40) ; // s l a v e wa i t s 15−60us
40 i f (OWPORTIN & OWPORTPIN) return 1 ; // l i n e shou ld be p u l l e d down by

s l a v e
41 delay_us (300) ; // s l a v e TX presence pu l s e 60−240us
42 i f (! (OWPORTIN & OWPORTPIN)) return 2 ; // l i n e shou ld be ” r e l e a s e d ”

by s l a v e
43 return 0 ;
44 }
45

46 //###
47 void ow_write_bit (int b i t)
48 {
49 // delay_us (1) ; // recovery , min 1us
50 OW_HI
51 i f (b i t) {
52 OW_LO
53 delay_us (5) ; // max 15 us
54 OW_RLS // input
55 delay_us (56) ;
56 }
57 else {
58 OW_LO
59 delay_us (60) ; // min 60 us
60 OW_RLS // input
61 delay_us (1) ;
62 }
63 }
64

65 //###
66 int ow_read_bit ()
67 {
68 int b i t =0;

99

I. Código desenvolvido

69 // delay_us (1) ; // recovery , min 1us
70 OW_LO
71 delay_us (5) ; // ho ld min 1us
72 OW_RLS
73 delay_us (10) ; // 15 us window
74 i f (OWPORTIN & OWPORTPIN) {
75 b i t = 1 ;
76 }
77 delay_us (46) ; // r e s t o f the read s l o t
78 return b i t ;
79 }
80

81 //###
82 void ow_write_byte (uint8_t byte)
83 {
84 int i ;
85 for (i = 0 ; i < 8 ; i++)
86 {
87 ow_write_bit (byte & 1) ;
88 byte >>= 1 ;
89 }
90 }
91

92 //###
93 uint8_t ow_read_byte ()
94 {
95 unsigned int i ;
96 uint8_t byte = 0 ;
97 for (i = 0 ; i < 8 ; i++)
98 {
99 byte >>= 1 ;

100 i f (ow_read_bit ()) byte |= 0x80 ;
101 }
102 return byte ;
103 }
104

105 //###
106

107 f loat get_temp ()
108 {
109 uint8_t i ;
110 uint8_t type_s=0;
111 // uint8_t data [1 2] ;

100

I.1. MCU Módulo lisímetro

112

113 ow_reset () ;
114 ow_write_byte (DS1820_SKIP_ROM) ; // s k i p ROM command
115 ow_write_byte (DS1820_CONVERT_T) ; // conver t T command
116 OW_HI
117 delay_ms (75) ; // at l e a s t 750 ms f o r the d e f a u l t 12− b i t r e s o l u t i o n
118 ow_reset () ;
119 ow_write_byte (DS1820_SKIP_ROM) ; // s k i p ROM command
120 ow_write_byte (DS1820_READ_SCRATCHPAD) ; // read scra tchpad command
121

122 for (i = 0 ; i < 9 ; i++) {
123 data [i] = ow_read_byte () ;
124 }
125

126 int16_t raw = (data [1] << 8) | data [0] ;
127 i f (type_s) {
128 raw = raw << 3 ; // 9 b i t r e s o l u t i o n d e f a u l t
129 i f (data [7] == 0x10) {
130 // ” count remain” g i v e s f u l l 12 b i t r e s o l u t i o n
131 raw = (raw & 0xFFF0) + 12 − data [6] ;
132 }
133 } else {
134 uint8_t c f g = (data [4] & 0x60) ;
135 // at lower res , the low b i t s are undef ined , so l e t ' s zero them
136 i f (c f g == 0x00) raw = raw & ~7; // 9 b i t r e s o l u t i o n , 93.75 ms
137 else i f (c f g == 0x20) raw = raw & ~3; // 10 b i t res , 187.5 ms
138 else i f (c f g == 0x40) raw = raw & ~1; // 11 b i t res , 375 ms
139 //// d e f a u l t i s 12 b i t r e s o l u t i o n , 750 ms convers ion time
140 }
141 return (f loat) raw / 1 6 . 0 ;
142 }
143

144 //###
145

146 f loat get_temp_ad (uint8_t addr [8])
147 {
148

149 ow_reset () ;
150 s e l e c t (addr) ;
151 ow_write_byte (DS1820_CONVERT_T) ; // conver t T command
152 OW_HI
153 delay_ms (750) ; // at l e a s t 750 ms f o r the d e f a u l t 12− b i t r e s o l u t i o n
154 ow_reset () ;

101

I. Código desenvolvido

155 s e l e c t (addr) ;
156 ow_write_byte (DS1820_READ_SCRATCHPAD) ; // read scra tchpad command
157

158 for (i = 0 ; i < 9 ; i++) {
159 data [i] = ow_read_byte () ;
160 }
161

162 int16_t raw = (data [1] << 8) | data [0] ;
163 uint8_t c f g = (data [4] & 0x60) ;
164 // at lower res , the low b i t s are undef ined , so l e t ' s zero them
165 i f (c f g == 0x00) raw = raw & ~7; // 9 b i t r e s o l u t i o n , 93.75 ms
166 else i f (c f g == 0x20) raw = raw & ~3; // 10 b i t res , 187.5 ms
167 else i f (c f g == 0x40) raw = raw & ~1; // 11 b i t res , 375 ms
168 //// d e f a u l t i s 12 b i t r e s o l u t i o n , 750 ms convers ion time
169 // }
170 return (f loat) raw / 1 6 . 0 ;
171

172 }

Listagem I.4: Código ds18b20.c (MCU Módulo lisímetro).

1 /###
2 // h t t p s ://www. maximintegrated . com/en/app−notes / index . mvp/ id /187
3

4 #ifndef DS18B20_H_
5 #define DS18B20_H_
6 #include <s t d i n t . h>
7

8

9 // Port and p ins d e f i n i t i o n :
10 #define OWPORTDIR P2DIR
11 #define OWPORTOUT P2OUT
12 #define OWPORTIN P2IN
13 #define OWPORTREN P2REN
14 #define OWPORTPIN BIT0
15 #define OW_LO { OWPORTDIR |= OWPORTPIN; OWPORTREN &= ~OWPORTPIN;

OWPORTOUT &= ~OWPORTPIN; }
16 #define OW_HI { OWPORTDIR |= OWPORTPIN; OWPORTREN &= ~OWPORTPIN;

OWPORTOUT |= OWPORTPIN; }
17 #define OW_RLS { OWPORTDIR &= ~OWPORTPIN; OWPORTREN |= OWPORTPIN;

OWPORTOUT |= OWPORTPIN; }
18

19 // l i s t o f commands DS18B20 :

102

I.1. MCU Módulo lisímetro

20

21 #define DS1820_WRITE_SCRATCHPAD 0x4E
22 #define DS1820_READ_SCRATCHPAD 0xBE
23 #define DS1820_COPY_SCRATCHPAD 0x48
24 #define DS1820_READ_EEPROM 0xB8
25 #define DS1820_READ_PWRSUPPLY 0xB4
26 #define DS1820_SEARCHROM 0xF0
27 #define DS1820_SKIP_ROM 0xCC
28 #define DS1820_READROM 0x33
29 #define DS1820_MATCHROM 0x55
30 #define DS1820_ALARMSEARCH 0xEC
31 #define DS1820_CONVERT_T 0x44
32

33 // Function d e f i n i t i o n s :
34 void ow_portsetup () ;
35 int ow_reset () ;
36 void ow_write_bit (int b i t) ;
37 int ow_read_bit () ;
38 void ow_write_byte (uint8_t byte) ;
39 uint8_t ow_read_byte () ;
40 void onewire_line_low () ;
41 void onewire_l ine_high () ;
42 void onewi re_l ine_re l ea se () ;
43 f loat get_temp_ad (uint8_t addr [8]) ;
44 f loat get_temp () ;
45

46 #endif /∗ ONEWIRE_H_ ∗/

Listagem I.5: Código ds18b20.h (MCU Módulo lisímetro).

1 /∗
2 ∗ HX711 d r i v e r
3 ∗
4 ∗ Created on : 19/05/2019
5 ∗ Author : Car los Almeida
6 ∗ Develop by Lysimeter MIOT1819
7 ∗/
8

9

10 #ifndef HX711_H_
11 #define HX711_H_
12

13 #include ” de lay . h”

103

I. Código desenvolvido

14 #include <s t d i n t . h>
15

16 #define ADSK BIT4 // Clock
17 #define ADDO BIT3 // Data
18

19 // Functions
20 //

∗∗∗

21 unsigned long read_HX711 (void) ; // Read ADC Converter
22 void c a l i b r a t i o n (uint8_t ch) ; // C a l i b r a t i o n channel
23 int get_Weight (uint8_t ch) ; // Get we igh t channel in grams
24 void set_CH(unsigned char) ; // Set channel − 0−>Ch A, 1−>Ch

B, 2−>Ch A
25 void power_off () ;
26 void HX711_init () ;
27

28 // unsigned long count ;
29 // Constants
30 //

∗∗∗

31 const f loat F_CAL[3] = {1 .15 , 8 . 88 , 0 . 5 7 5 } ; // C a l i b r a t i o n
f a c t o r − Ch A, Ch B, Ch A

32

33 // Var iab l e s
34 //

∗∗∗

35 uint8_t c lk_pul se s ;
36 long b u f f e r = 0 ;
37 long weight = 0 ;
38

39 //#pragma LOCATION(ca l i b ra t i on_va lue , 0x1000) ; // Save in Flash
Memory Address 0x1000

40 unsigned long ca l i b ra t i on_va lue [3] = {8460000 , 8543011 , 8555100}; //
C a l i b r a t i o n Value − Ch A, Ch B, Ch A

41

42

43 //
∗∗∗

44 int get_Weight (uint8_t ch)

104

I.1. MCU Módulo lisímetro

45 {
46 set_CH(ch) ;
47 read_HX711 () ;
48 b u f f e r = read_HX711 () ;
49 weight = (b u f f e r − ca l i b r a t i on_va lue [ch −1]) /100 ;
50 weight = (int) ((f loat) weight ∗F_CAL[ch −1]) ; // c a l i b r a t i o n f a c t o r /

need a d j u s t to compare
51

52 return weight ;
53 }
54

55 //
∗∗∗

56 void c a l i b r a t i o n (uint8_t ch)
57 {
58 set_CH(ch) ;
59 read_HX711 () ;
60 b u f f e r = read_HX711 () ;
61 ca l i b ra t i on_va lue [ch −1] = b u f f e r ;
62 }
63

64

65 //
∗∗∗

66 void power_off ()
67 {
68 P2OUT |= ADSK;
69 delay_us (60) ;
70 }
71

72 //
∗∗∗

73 void set_CH(uint8_t ch)
74 {
75 switch (ch) {
76

77 case 1 :
78 c lk_pul se s = 25 ; // Channel A − gain o f 128
79 break ;
80 case 2 :

105

I. Código desenvolvido

81 c lk_pul se s = 26 ; // Channel B − gain o f 32
82 break ;
83 case 3 :
84 c lk_pul se s = 27 ; // Channel A − gain o f 64
85 break ;
86

87 default : c lk_pul se s = 25 ;
88 }
89 }
90

91

92

93 //
∗∗∗

94 unsigned long read_HX711 () {
95 unsigned long count ;
96 unsigned char i ;
97 P2OUT |= ADDO;
98 // delay_us (1) ;
99 P2OUT &= ~ADSK;

100 delay_us (1) ;
101 count = 0 ;
102 while (P2IN == ADDO) ;
103 for (i =1; i<c lk_pul se s ; i++){
104 P2OUT |= ADSK;
105 delay_us (10) ;
106 count = count << 1 ;
107 P2OUT &= ~ADSK;
108 delay_us (10) ;
109 i f (P2IN == ADDO) count ++;
110 }
111 P2OUT |= ADSK;
112 delay_us (10) ;
113 count = count^0x800000 ;
114 P2OUT &= ~ADSK;
115 delay_us (10) ;
116

117 return (count) ;
118

119 }
120

121 void HX711_init () // &= 0 / |= 1

106

I.1. MCU Módulo lisímetro

122 {
123 P2OUT = 0x00 ;
124 P2DIR = 0xFF ;
125 P2DIR &= ~ADDO;
126 P2SEL = 0x00 ;
127 }
128

129 #endif

Listagem I.6: Código hx711.h (MCU Módulo lisímetro).

1 /∗
2 ∗ servo . h
3 ∗
4 ∗ Created on : 01/12/2019
5 ∗ Author : Car los Almeida
6 ∗/
7

8 #ifndef SERVO_H_
9 #define SERVO_H_

10

11

12 #include <msp430g2553 . h>
13 #include <s t d i o . h>
14 #include <s t d i n t . h>
15

16

17 void init_SERVO () ;
18

19 void set_SERVO(unsigned int ang) ;
20

21

22

23 void init_SERVO ()
24 {
25

26 P2SEL |= BIT5 ;
27 // P2SEL2 &= ~BIT5 ;
28 }
29

30 void set_SERVO(unsigned int ang)
31 {
32 TA1CCR2 = 530 + ang ∗10 ; // TA1CCR2: 500 => T=0.5ms , 2500 => T=2.5ms

107

I. Código desenvolvido

33 }
34

35

36 #endif /∗ SERVO_H_ ∗/

Listagem I.7: Código servo.h (MCU Módulo lisímetro).

1 ∗
2 ∗ sht3x . h
3 ∗
4 ∗ Created on : 03/11/2019
5 ∗ Author : Car los Almeida
6 ∗/
7

8 #ifndef SHT3X_H_
9 #define SHT3X_H_

10

11 #include <msp430 . h>
12 #include <stdboo l . h>
13 #include <s t d i n t . h>
14

15 void init_SHT3X () ;
16 bool read_SHT3X () ;
17 f loat get_Temp () ;
18 f loat get_Hum() ;
19

20 SWI2C_I2CTransaction SHT3X;
21 uint8_t WR_Buffer [2] ;
22 uint8_t RD_Buffer [6] ;
23

24 void init_SHT3X ()
25 {
26 SHT3X. address = 0x44 ;
27 WR_Buffer [0] = 0x30 ; // CMD
28 WR_Buffer [1] = 0xA2 ; // DATA
29 SHT3X. wr i t eBu f f e r = WR_Buffer ;
30 SHT3X. numWriteBytes = 2 ;
31 SWI2C_performI2CTransaction(&SHT3X) ;
32 delay_ms (5) ;
33 SWI2C_performI2CTransaction(&SHT3X) ;
34 delay_ms (5) ;
35 }
36

108

I.1. MCU Módulo lisímetro

37

38 bool read_SHT3X ()
39 {
40 SHT3X. address = 0x44 ;
41 WR_Buffer [0] = 0x24 ; // CMD Read Word
42 WR_Buffer [1] = 0x0b ;
43 SHT3X. wr i t eBu f f e r = WR_Buffer ;
44 SHT3X. numWriteBytes = 2 ;
45 SHT3X. numReadBytes = 6 ;
46 SHT3X. readBuf f e r = RD_Buffer ;
47 SWI2C_performI2CTransaction(&SHT3X) ;
48 delay_ms (5) ;
49 SWI2C_performI2CTransaction(&SHT3X) ;
50 delay_ms (5) ;
51 // check CRC fo r both RH and T
52 i f (c rc8 (&RD_Buffer [0] , 2) != RD_Buffer [2] | | c r c8 (&RD_Buffer [3] ,

2) != RD_Buffer [5]) {
53 return f a l s e ;
54 }
55 return t rue ;
56 }
57

58 f loat get_Temp ()
59 {
60 uint32_t stemp = ((uint32_t) RD_Buffer [0] << 8) | RD_Buffer [1] ;
61 stemp = ((4375 ∗ stemp) >> 14) − 4500 ;
62 return (f loat) stemp / 1 0 0 . 0 ;
63

64 }
65

66 f loat get_Temp1 ()
67 {
68 uint16_t stemp = ((uint16_t) RD_Buffer [0] << 8) | RD_Buffer [1] ;
69 f loat temp = −45 + 175 ∗ ((f loat) stemp /65535) ;
70 return temp ;
71 }
72

73

74

75

76 f loat get_Hum()
77 {
78 uint32_t shum = ((uint32_t) RD_Buffer [3] << 8) | RD_Buffer [4] ;

109

I. Código desenvolvido

79 shum = (625 ∗ shum) >> 12 ;
80 return (f loat) shum / 100 .0 f ;
81 }
82

83

84 crc8 (const uint8_t ∗ data)
85 {
86 // adapted from SHT21 sample code from
87 // h t t p ://www. s e n s i r i o n . com/en/ product s / humidity−temperature /download

−center /
88

89 uint8_t c rc = 0 x f f ;
90 uint8_t byteCtr ;
91 uint8_t b i t ;
92 for (byteCtr = 0 ; byteCtr < 2 ; ++byteCtr) {
93 c r c ^= data [byteCtr] ;
94 for (b i t = 8 ; b i t > 0 ; −−b i t) {
95 i f (c r c & 0x80) {
96 c r c = (c rc << 1) ^ 0x31 ;
97 } else {
98 c r c = (c rc << 1) ;
99 }

100 }
101 }
102 return c r c ;
103 }
104

105 #endif /∗ SHT3X_H_ ∗/

Listagem I.8: Código sht3x.h (MCU Módulo lisímetro).

1 /∗
2 ∗ TSL2561 . h
3 ∗
4 ∗ Created on : 07/10/2019
5 ∗ Author : Car los Almeida
6 ∗/
7

8 #ifndef TSL2561_H_
9 #define TSL2561_H_

10

11 #include <msp430 . h>
12 #include <stdboo l . h>

110

I.1. MCU Módulo lisímetro

13 #include <s t d i n t . h>
14

15 void init_TSL2561 () ;
16 unsigned int read_TSL2561_CH0 () ;
17 unsigned int read_TSL2561_CH1 () ;
18

19 SWI2C_I2CTransaction TSL2561 ;
20

21 uint8_t WR_Buffer [2] ;
22 uint8_t RD_Buffer [6] ;
23

24 void init_TSL2561 ()
25 {
26 TSL2561 . address = 0x39 ;
27 WR_Buffer [0] = 0x80 ; // CMD
28 WR_Buffer [1] = 0x03 ; // DATA
29 TSL2561 . wr i t eBu f f e r = WR_Buffer ;
30 TSL2561 . numWriteBytes = 2 ;
31 SWI2C_performI2CTransaction(&TSL2561) ;
32 delay_ms (150) ;
33 SWI2C_performI2CTransaction(&TSL2561) ;
34 delay_ms (150) ;
35

36 TSL2561 . address = 0x39 ;
37 WR_Buffer [0] = 0x81 ; // CMD − Set up Timing Reg i s t e r
38 WR_Buffer [1] = 0x02 ; // DATA s e t gain 1x i n t e g r a t i o n time 402ms

(pág . 20)
39 TSL2561 . wr i t eBu f f e r = WR_Buffer ;
40 TSL2561 . numWriteBytes = 2 ;
41 SWI2C_performI2CTransaction(&TSL2561) ;
42 delay_ms (150) ;
43 SWI2C_performI2CTransaction(&TSL2561) ;
44 delay_ms (150) ;
45 }
46

47 unsigned int read_TSL2561_CH0 ()
48 {
49 TSL2561 . address = 0x39 ;
50 WR_Buffer [0] = 0xAC; // CMD Read Word
51 TSL2561 . wr i t eBu f f e r = WR_Buffer ;
52 TSL2561 . numWriteBytes = 1 ;
53 TSL2561 . numReadBytes = 2 ;
54 TSL2561 . r eadBuf f e r = RD_Buffer ;

111

I. Código desenvolvido

55 SWI2C_performI2CTransaction(&TSL2561) ;
56 delay_ms (150) ;
57 SWI2C_performI2CTransaction(&TSL2561) ;
58 delay_ms (150) ;
59 return (256∗ RD_Buffer [1]+ RD_Buffer [0]) ;
60 }
61

62

63 unsigned int read_TSL2561_CH1 ()
64 {
65 TSL2561 . address = 0x39 ;
66 WR_Buffer [0] = 0xAE; // CMD Read Word
67 TSL2561 . wr i t eBu f f e r = WR_Buffer ;
68 TSL2561 . numWriteBytes = 1 ;
69 TSL2561 . numReadBytes = 2 ;
70 TSL2561 . r eadBuf f e r = RD_Buffer ;
71 SWI2C_performI2CTransaction(&TSL2561) ;
72 delay_ms (150) ;
73 SWI2C_performI2CTransaction(&TSL2561) ;
74 delay_ms (150) ;
75 return (256∗ RD_Buffer [1]+ RD_Buffer [0]) ;
76 }
77

78 #endif /∗ TSL2561_H_ ∗/

Listagem I.9: Código TSL2561.h (MCU Módulo lisímetro).

1 /∗ −−COPYRIGHT−−,BSD
2 ∗ Copyright (c) 2016 , Texas Instruments Incorpora ted
3 ∗ A l l r i g h t s r e s e rved .
4 ∗
5 ∗ R e d i s t r i b u t i o n and use in source and b inary forms , wi th or wi thou t
6 ∗ modi f i ca t ion , are permi t t ed prov ided t h a t the f o l l o w i n g cond i t i on s
7 ∗ are met :
8 ∗
9 ∗ ∗ R e d i s t r i b u t i o n s o f source code must r e t a i n the above copy r i g h t

10 ∗ not ice , t h i s l i s t o f c ond i t i on s and the f o l l o w i n g d i s c l a imer .
11 ∗
12 ∗ ∗ R e d i s t r i b u t i o n s in b inary form must reproduce the above copy r i g h t
13 ∗ not ice , t h i s l i s t o f c ond i t i on s and the f o l l o w i n g d i s c l a imer in

the
14 ∗ documentation and/or o ther ma t e r i a l s prov ided wi th the

d i s t r i b u t i o n .

112

I.1. MCU Módulo lisímetro

15 ∗
16 ∗ ∗ Nei ther the name o f Texas Instruments Incorpora ted nor the names

o f
17 ∗ i t s c o n t r i b u t o r s may be used to endorse or promote product s

de r i v ed
18 ∗ from t h i s so f tware wi thout s p e c i f i c p r i o r wr i t t en permiss ion .
19 ∗
20 ∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

”AS IS”
21 ∗ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO

,
22 ∗ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR
23 ∗ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 ∗ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL

,
25 ∗ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 ∗ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS;
27 ∗ OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY ,
28 ∗ WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE

OR
29 ∗ OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 ∗ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 ∗ −−/COPYRIGHT−−∗/
32 //

∗∗∗

33

34 #include ” swi2c_master . h”
35

36 //#inc l ude ” de lay . h”
37

38 int dl = 5 ;
39

40 /∗ S t a t i c Functions ∗/
41 stat ic bool SWI2C_readData (uint8_t addr , uint8_t ∗ inputArray ,

uint_fast16_t s i z e) ;
42 stat ic bool SWI2C_writeData (uint8_t addr , uint8_t ∗outputArray ,

uint_fast16_t s i z e , bool sendStop) ;
43

44 void SWI2C_initI2C (void)

113

I. Código desenvolvido

45 {
46 /∗ Using the d i r e c t i o n pin to c o n t r o l the output . When s e t as an

input , the
47 hardware pu l l −ups w i l l t ake over and cause the pin to go h igh .

When
48 s e t as an output , the MSP430 w i l l d r i v e the l i n e s low ∗/
49 SWI2C_PxOUT &= ~(SWI2C_SCL | SWI2C_SDA) ;
50 SWI2C_SCL_HIGH;
51 SWI2C_SDA_HIGH;
52

53 // PM5CTL0 &= ~LOCKLPM5; // Disab l e the GPIO power
−on d e f a u l t high−impedance mode

54 // to a c t i v a t e p r e v i o u s l y
con f i gured por t
s e t t i n g s

55

56 /∗ Timer i s i n i t i a l i z e d to run o f f SMCLK(8MHz) wi th f requency 200
KHz ∗/

57 // TB0CCR0 = SWI2C_TIMER_PERIOD;
58 }
59

60 bool SWI2C_performI2CTransaction (SWI2C_I2CTransaction ∗ i2cTransac t i on)
61 {
62 i f (i2cTransact ion −>numWriteBytes > 0)
63 {
64 /∗ Only s k i p p i n g the s top i f we have a repea ted s t a r t to send

∗/
65 i f (i2cTransact ion −>repeatedSta r t && i2cTransact ion −>

numReadBytes > 0)
66 {
67 i f (! SWI2C_writeData (i2cTransact ion −>address ,
68 i 2cTransact ion −>wr i t eBuf f e r , i2cTransact ion −>

numWriteBytes ,
69 f a l s e))
70 {
71 return f a l s e ;
72 }
73 }
74 else
75 {
76 i f (! SWI2C_writeData (i2cTransact ion −>address ,
77 i 2cTransact ion −>wr i t eBuf f e r , i2cTransact ion −>

numWriteBytes ,

114

I.1. MCU Módulo lisímetro

78 t rue))
79 {
80 return f a l s e ;
81 }
82 }
83 }
84

85 /∗ Next doing the read ∗/
86 i f (i2cTransact ion −>numReadBytes > 0)
87 {
88 i f (! SWI2C_readData (i2cTransact ion −>address , i2cTransact ion −>

readBuf fer ,
89 i 2cTransact ion −>numReadBytes))
90 {
91 return f a l s e ;
92 }
93 }
94

95 return t rue ;
96 }
97

98 stat ic bool SWI2C_writeData (uint8_t addr , uint8_t ∗outputArray ,
uint_fast16_t s i z e , bool sendStop)

99 {
100 uint_fast8_t b i t s , temp ;
101 uint16_t i i = 0 ;
102

103 /∗ S t a r t i n g the t imer ∗/
104 // TB0CTL = TBSSEL_2 + MC_1 + TBCLR;
105

106 /∗ Sending the START ∗/
107 SWI2C_SDA_LOW;
108 __no_operation () ;
109 SWI2C_SCL_LOW;
110 // TIMER_ITERATION() ;
111 delay_us (d l) ;
112

113 /∗ Next doing the c o n t r o l by t e ∗/
114 temp = (addr << 1) ;
115 b i t s = 8 ;
116

117 /∗ Loop u n t i l a l l b i t s o f the address by t e are sen t out ∗/
118 do

115

I. Código desenvolvido

119 {
120 /∗ Deciding i f we want to send a high or low out o f the l i n e ∗/
121 i f (temp & BIT7)
122 {
123 SWI2C_SDA_HIGH;
124 }
125 else
126 {
127 SWI2C_SDA_LOW;
128 }
129

130 /∗ Now t h a t we s e t the SDA l ine , we have to send out a c l o c k
pu l s e ∗/

131 SWI2C_SCL_HIGH;
132 // TIMER_ITERATION() ;
133 delay_us (d l) ;
134

135 /∗ Incrementing to the next b i t and wa i t ing f o r the next c l o c k
c y c l e ∗/

136 temp = (temp << 1) ;
137 b i t s = (b i t s − 1) ;
138

139 SWI2C_SCL_LOW;
140 // TIMER_ITERATION() ;
141 delay_us (d l) ;
142

143

144 } while (b i t s > 0) ;
145

146 /∗ Detec t ing i f we have a NAK on the bus . I f the s l a v e dev i c e NAKed
the

147 c o n t r o l byte , i t p robab l y i sn ' t t h e r e on the bus so we shou ld
send

148 an I2C s top and re turn f a l s e ∗/
149 SWI2C_SDA_HIGH;
150 SWI2C_SCL_HIGH;
151 /∗
152 ∗ Waiting f o r our c l o c k l i n e to go h igh i f the s l a v e i s s t r e t c h i n g
153 ∗/
154 while (! (SWI2C_PxIN & SWI2C_SCL)) ;
155

156 // TIMER_ITERATION() ;
157 delay_us (d l) ;

116

I.1. MCU Módulo lisímetro

158

159 i f (SWI2C_PxIN & SWI2C_SDA)
160 {
161 goto I2CWriteTransactionCleanUp ;
162 }
163

164 /∗ Sending out another c l o c k c y c l e ∗/
165 SWI2C_SCL_LOW;
166 // TIMER_ITERATION() ;
167 delay_us (d l) ;
168

169 /∗ Next , l e t us send out a l l b y t e s in the user b u f f e r ∗/
170 for (i i =0; i i <s i z e ; i i ++)
171 {
172 temp = outputArray [i i] ;
173 b i t s = 8 ;
174

175 /∗ Loop u n t i l a l l b i t s o f the curren t by t e are sen t out ∗/
176 do
177 {
178 /∗ Deciding i f we want to send a high or low out o f the

l i n e ∗/
179 i f (temp & BIT7)
180 {
181 SWI2C_SDA_HIGH;
182 }
183 else
184 {
185 SWI2C_SDA_LOW;
186 }
187

188 /∗ Now t h a t we s e t the SDA l ine , we send out a c l o c k pu l s e
∗/

189 SWI2C_SCL_HIGH;
190 // TIMER_ITERATION() ;
191 delay_us (d l) ;
192

193 /∗ Incrementing to the next b i t and wa i t ing f o r next c l o c k
c y c l e ∗/

194 temp = (temp << 1) ;
195 b i t s = (b i t s − 1) ;
196 SWI2C_SCL_LOW;
197 // TIMER_ITERATION() ;

117

I. Código desenvolvido

198 delay_us (d l) ;
199

200 } while (b i t s > 0) ;
201

202 /∗ Detec t ing the NAK. We shou ld break out o f the send loop ∗/
203 SWI2C_SDA_HIGH;
204 SWI2C_SCL_HIGH;
205 /∗
206 ∗ Waiting f o r our c l o c k l i n e to go h igh i f the s l a v e i s

s t r e t c h i n g
207 ∗/
208 while (! (SWI2C_PxIN & SWI2C_SCL)) ;
209

210 // TIMER_ITERATION() ;
211 delay_us (d l) ;
212

213 i f (SWI2C_PxIN & SWI2C_SDA)
214 {
215 goto I2CWriteTransactionCleanUp ;
216 }
217

218 /∗ Sending out another c l o c k c y c l e ∗/
219 SWI2C_SCL_LOW;
220 // TIMER_ITERATION() ;
221 delay_us (d l) ;
222 }
223

224 I2CWriteTransactionCleanUp :
225 /∗ I f the user d id not r e que s t to sk ip , we send out the s top b i t ∗/
226 i f ((sendStop && i i == s i z e) | | (i i != s i z e))
227 {
228 SWI2C_SCL_LOW;
229 // TIMER_ITERATION() ;
230 delay_us (d l) ;
231 SWI2C_SDA_LOW;
232 // TIMER_ITERATION() ;
233 delay_us (d l) ;
234 SWI2C_SCL_HIGH;
235 __no_operation () ;
236 SWI2C_SDA_HIGH;
237 }
238 else
239 {

118

I.1. MCU Módulo lisímetro

240 SWI2C_SCL_HIGH;
241 SWI2C_SDA_HIGH;
242 }
243

244 /∗ Stop the t imer ∗/
245 // TB0CTL = MC_0;
246

247 /∗ I f a l l b y t e s were sent , re turn true− otherw i se f a l s e . ∗/
248 i f (i i == s i z e)
249 return t rue ;
250 else
251 return f a l s e ;
252 }
253

254 stat ic bool SWI2C_readData (uint8_t addr , uint8_t ∗ inputArray ,
uint_fast16_t s i z e)

255 {
256 uint_fast8_t b i t s , temp ;
257 uint16_t i i = 0 ;
258

259 /∗ S t a r t i n g the t imer ∗/
260 // TB0CTL = TBSSEL_2 + MC_1 + TBCLR;
261

262 /∗ Sending the START ∗/
263 SWI2C_SDA_LOW;
264 __no_operation () ;
265 SWI2C_SCL_LOW;
266 // TIMER_ITERATION() ;
267 delay_us (d l) ;
268

269 /∗ Next doing the c o n t r o l by t e ∗/
270 temp = (addr << 1) | BIT0 ;
271 b i t s = 8 ;
272

273 /∗ Loop u n t i l a l l b i t s o f the address by t e are sen t out ∗/
274 do
275 {
276 /∗ Deciding i f we want to send a high or low out o f the l i n e ∗/
277 i f (temp & BIT7)
278 {
279 SWI2C_SDA_HIGH;
280 }
281 else

119

I. Código desenvolvido

282 {
283 SWI2C_SDA_LOW;
284 }
285

286 /∗ Now t h a t we s e t the SDA l ine , we have to send out a c l o c k
pu l s e ∗/

287 SWI2C_SCL_HIGH;
288 // TIMER_ITERATION() ;
289 delay_us (d l) ;
290

291 /∗ Incrementing to the next b i t and wa i t ing f o r the next c l o c k
c y c l e ∗/

292 temp = (temp << 1) ;
293 b i t s = (b i t s − 1) ;
294 SWI2C_SCL_LOW;
295 // TIMER_ITERATION() ;
296 delay_us (d l) ;
297

298 } while (b i t s > 0) ;
299

300 /∗ Detec t ing i f we have a NAK on the bus . I f the s l a v e dev i c e NAKed
the

301 c o n t r o l byte , i t p robab l y i sn ' t t h e r e on the bus so we shou ld
send

302 an I2C s top and re turn f a l s e ∗/
303 SWI2C_SDA_HIGH;
304 SWI2C_SCL_HIGH;
305 // TIMER_ITERATION() ;
306 delay_us (d l) ;
307

308 i f (SWI2C_PxIN & SWI2C_SDA)
309 {
310 goto I2CReadTransactionCleanUp ;
311 }
312

313 /∗ Next , we want to read out a l l o f the data reque s t ed ∗/
314 for (i i =0; i i <s i z e ; i i ++)
315 {
316 /∗
317 ∗ Waiting f o r our c l o c k l i n e to go h igh i f the s l a v e i s

s t r e t c h i n g
318 ∗/
319 while (! (SWI2C_PxIN & SWI2C_SCL)) ;

120

I.1. MCU Módulo lisímetro

320

321 /∗ Setup the read v a r i a b l e s ∗/
322 temp = 0 ;
323 b i t s = 0x08 ;
324

325 /∗ Sending out another c l o c k c y c l e ∗/
326 SWI2C_SCL_LOW;
327 // TIMER_ITERATION() ;
328 delay_us (d l) ;
329 SWI2C_SDA_HIGH;
330

331 /∗ Loop to read u n t i l a l l b i t s have been read ∗/
332 do
333 {
334 /∗ Priming our temporary v a r i a b l e and sending a c l o c k pu l s e

∗/
335 temp = (temp << 1) ;
336 SWI2C_SCL_HIGH;
337 // TIMER_ITERATION() ;
338 delay_us (d l) ;
339

340 /∗ I f the data l i n e i s high , record ing t h a t ∗/
341 i f (SWI2C_PxIN & SWI2C_SDA)
342 {
343 temp += 1 ;
344 }
345

346 /∗ Send out another c l o c k c y c l e and decrement our counter
∗/

347 b i t s = (b i t s − 1) ;
348 SWI2C_SCL_LOW;
349 // TIMER_ITERATION() ;
350 delay_us (d l) ;
351 }
352 while (b i t s > 0) ;
353

354 /∗ Stor ing the data o f f ∗/
355 inputArray [i i] = temp ;
356

357 /∗ Now the master needs to send out the ACK ∗/
358 i f (i i == s i z e − 1)
359 SWI2C_SDA_HIGH;
360 else

121

I. Código desenvolvido

361 SWI2C_SDA_LOW;
362 SWI2C_SCL_HIGH;
363

364 /∗
365 ∗ Waiting f o r our c l o c k l i n e to go h igh i f the s l a v e i s

s t r e t c h i n g
366 ∗/
367 while (! (SWI2C_PxIN & SWI2C_SCL)) ;
368

369 // TIMER_ITERATION() ;
370 delay_us (d l) ;
371 }
372

373 I2CReadTransactionCleanUp :
374

375 /∗ Sending out the s top b i t ∗/
376 SWI2C_SCL_LOW;
377 SWI2C_SDA_LOW;
378 // TIMER_ITERATION() ;
379 delay_us (d l) ;
380 SWI2C_SCL_HIGH;
381 __no_operation () ;
382 SWI2C_SDA_HIGH;
383 // TIMER_ITERATION() ;
384 delay_us (d l) ;
385

386 /∗ Stop the t imer ∗/
387 // TB0CTL = MC_0;
388

389 /∗ I f a l l b y t e s were read , re turn true− otherw i se f a l s e . ∗/
390 i f (i i == s i z e)
391 return t rue ;
392 else
393 return f a l s e ;
394 }

Listagem I.10: Código swi2c_master.c (MCU Módulo lisímetro).

1 /∗ −−COPYRIGHT−−,BSD
2 ∗ Copyright (c) 2016 , Texas Instruments Incorpora ted
3 ∗ A l l r i g h t s r e s e rved .
4 ∗
5 ∗ R e d i s t r i b u t i o n and use in source and b inary forms , wi th or wi thou t

122

I.1. MCU Módulo lisímetro

6 ∗ modi f i ca t ion , are permi t t ed prov ided t h a t the f o l l o w i n g cond i t i on s
7 ∗ are met :
8 ∗
9 ∗ ∗ R e d i s t r i b u t i o n s o f source code must r e t a i n the above copy r i g h t

10 ∗ not ice , t h i s l i s t o f c ond i t i on s and the f o l l o w i n g d i s c l a imer .
11 ∗
12 ∗ ∗ R e d i s t r i b u t i o n s in b inary form must reproduce the above copy r i g h t
13 ∗ not ice , t h i s l i s t o f c ond i t i on s and the f o l l o w i n g d i s c l a imer in

the
14 ∗ documentation and/or o ther ma t e r i a l s prov ided wi th the

d i s t r i b u t i o n .
15 ∗
16 ∗ ∗ Nei ther the name o f Texas Instruments Incorpora ted nor the names

o f
17 ∗ i t s c o n t r i b u t o r s may be used to endorse or promote product s

de r i v ed
18 ∗ from t h i s so f tware wi thout s p e c i f i c p r i o r wr i t t en permiss ion .
19 ∗
20 ∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

”AS IS”
21 ∗ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO

,
22 ∗ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR
23 ∗ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 ∗ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL

,
25 ∗ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 ∗ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS;
27 ∗ OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY ,
28 ∗ WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE

OR
29 ∗ OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 ∗ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 ∗ −−/COPYRIGHT−−∗/
32 //

∗∗∗

33

34 #include <msp430 . h>
35 #include <stdboo l . h>

123

I. Código desenvolvido

36 #include <s t d i n t . h>
37

38 /∗ Pin D e f i n i t i o n s . These shou ld be changed depending on the dev i c e
t h a t

39 ∗ you are us ing .
40 ∗/
41 #define SWI2C_SCL BIT1
42 #define SWI2C_SDA BIT2
43 #define SWI2C_PxDIR P2DIR
44 #define SWI2C_PxOUT P2OUT
45 #define SWI2C_PxIN P2IN
46 #define SWI2C_SDA_LOW SWI2C_PxDIR |= SWI2C_SDA
47 #define SWI2C_SDA_HIGH SWI2C_PxDIR &= ~SWI2C_SDA
48 #define SWI2C_SCL_LOW SWI2C_PxDIR |= SWI2C_SCL
49 #define SWI2C_SCL_HIGH SWI2C_PxDIR &= ~SWI2C_SCL
50

51 /∗ Def ines the b u f f e r s i z e to be used . This w i l l change depending on
your

52 ∗ a p p l i c a t i o n and the s i z e requirements f o r the t r a n s f e r .
53 ∗/
54

55 /∗ Conf i gura t ion s t r u c t u r e f o r performing an I2C t ran sac t i on ∗/
56 typedef struct _SWI2C_I2CTransaction
57 {
58 uint8_t address ;
59 uint_fast16_t numWriteBytes ;
60 uint8_t ∗ wr i t eBu f f e r ;
61 uint_fast16_t numReadBytes ;
62 uint8_t ∗ readBuf f e r ;
63 bool r epea t edSta r t ;
64 } SWI2C_I2CTransaction ;
65

66 /∗ Timer per iod f o r determining the c l o c k ra t e o f the I2C data c l o c k .
Note t h a t

67 ∗ the t imer i s sourced from SMCLK and t h a t t h i s number i s equa l to the
durat ion

68 ∗ o f rough ly HALF a c l o c k per iod . For example , i f SMCLK i s s e t to 3MHz
and the

69 ∗ per iod be low i s s e t to 15 , we would end up with an I2C data ra t e o f
70 ∗ approx imate ly 100Khz .
71 ∗
72 ∗ In short , the I2C data ra t e f requency can be c a l c u l a t e d by :
73 ∗

124

I.1. MCU Módulo lisímetro

74 ∗ I2C Data Rate = SMCLK Frequency
75 ∗ ___________________
76 ∗
77 ∗ 2 ∗ TimerPeriod
78 ∗/
79 #define SWI2C_TIMER_PERIOD 15
80

81 /∗ Macro f o r a t imer i t e r a t i o n ∗/
82 /∗
83 #d e f i n e TIMER_ITERATION() TB0CCTL0 &= ~(CCIFG) ; \
84 whi l e (! (TB0CCTL0 & CCIFG)) ;
85 ∗/
86 /∗ Function Proto types ∗/
87

88 //
∗∗∗

89 //
90 // ! I n i t i a l i z e s the so f tware I2C master . This f unc t i on take s the por t
91 // ! d e f i n i t i o n s t h a t are g iven above and c o n f i g u r e s the dev i c e f o r

so f tware
92 // ! I2C opera t ion .
93 // !
94 // ! \ re turn None
95 //
96 //

∗∗∗

97 extern void SWI2C_initI2C (void) ;
98

99 //
∗∗∗

100 //
101 // ! S t a r t s an I2C t r an sac t i on over the con f i gured I2C master dev i c e .

Note t h a t
102 // ! t h i s f unc t i on i s b l o c k i n g u n t i l the t r an sac t i on i s completed . I f a

t imeout
103 // ! f e a t u r e i s requ ired , the user shou ld use the watchdog module o f

t h e i r MCU
104 // ! in tandem with t h i s f unc t i on . Since the I2C s l a v e has the a b i l i t y

to
105 // ! ” c l o c k s t r e t c h ” the module , care has to be taken to manage the r e a l

125

I. Código desenvolvido

t ime
106 // ! behav ior o f the main a p p l i c a t i o n .
107 // !
108 // ! <hr>
109 // ! Conf igura t ion op t i ons f o r \ l i n k SWI2C_I2CTransaction \ end l ink

s t r u c t u r e .
110 // ! <hr>
111 // !
112 // ! \param address I2C S lave Address to communicate wi th .
113 // ! \param numWriteBytes Number o f b y t e s f o r the master to wr i t e
114 // ! \param wr i t eBu f f e r Pointer to the b u f f e r to wr i t e
115 // ! \param numReadBytes Number o f b y t e s to read
116 // ! \param readBuf fer Pointer to the b u f f e r to read va l u e s in t o
117 // ! \param r e p e a t e d S t a r t In the event t h a t both a read and wr i t e

opera t ion are
118 // ! reques ted , t h i s boo l va lue determines i f a repea ted s t a r t

con id i t on
119 // ! i s sen t out over the bus . I f s e t to true , no I2C STOP i s

sen t out
120 // ! a f t e r the wr i t e t r an sac t i on . I f s e t to f a l s e . Af ter the

wr i t e
121 // ! t r an sac t i on comple tes an I2C STOP cond i t i on i s sen t out ,

and then
122 // ! the I2C read t r an sac t i on i s t r e a t e d as a comp le t e l y

s epara t e
123 // ! t r an sac t i on
124 // !
125 // ! Note t h a t any order o f combinat ions can be passed in t o the

t r an sac t i on
126 // ! s t r u c t u r e . I f the user wants to on ly perform an I2C read , then only

the
127 // ! read parameters shou ld be popu la ted and the wr i t e parameters shou ld

be
128 // ! s e t to 0 (or v i c e versa f o r wr i t e) . The user can a l s o s p e c i f y both

read
129 // ! and wr i t e b y t e s and use the r e p e a t e d S t a r t parameter to s p e c i f y i f

t h e r e
130 // ! i s an I2C STOP between the t r a n s a c t i o n s . Note t h a t the wr i t e

t r an sac t i on
131 // ! i s a lways f i r s t when us ing t h i s f unc t i on .
132 // !
133 // ! \ re turn t rue i f the opera t ion passed , f a l s e o the rw i s e . A f a l s e

re turn

126

I.2. SoC ESP8266

134 // ! va lue means t h a t the dev i c e r e c e i v ed a NAK where one was not
expec ted .

135 //
136 //

∗∗∗

137 extern bool SWI2C_performI2CTransaction (SWI2C_I2CTransaction ∗
i2cTransac t i on) ;

Listagem I.11: Código swi2c_master.h (MCU Módulo lisímetro).

I.2 SoC ESP8266

1 // h t t p s :// g i t h u b . com/arduino−l i b r a r i e s /NTPClient
2 #include <NTPClient . h>
3 // h t t p s :// g i t h u b . com/ p l apo in t e6 /EspMQTTClient
4 #include <EspMQTTClient . h>
5 // h t t p s :// g i t h u b . com/ ever t −ar i a s /EasyButton/
6 #include <EasyButton . h>
7 // h t t p s :// g i t h u b . com/ tzapu /WiFiManager
8 #include <WiFiManager . h>
9

10 #define BUTTON_PIN 2 // Botão RST
11

12 EasyButton button (BUTTON_PIN) ;
13 WiFiManager wif iManager ;
14 WiFiUDP ntpUDP ;
15 NTPClient t imeCl i ent (ntpUDP, ” pt . pool . ntp . org ”) ;
16

17 EspMQTTClient c l i e n t (
18 ” l y s i m e t e r . ddns f r ee . com” , // Serv idor MQTT
19 1883 , // Porta MQTT
20 ”” , // Nome de u t i l i z a d o r MQTT
21 ”” , // Senha MQTT
22 ”ESP8266” // Nome que i d e n t i f i c a o d i s p o s i t i v o
23) ;
24

25 void setup ()
26 {
27 S e r i a l . begin (9600) ; // i n i c i a a comunicação s e r i e
28

127

I. Código desenvolvido

29 wifiManager . autoConnect (”AutoConnectAP”) ;
30

31 // I n i c i a l i z a o bo t ão RST
32 button . begin () ;
33

34 // Ativa o evento para responder ao pre s s i onar o bo t ão RST
35 button . onPressed (onPressed) ;
36

37 // I n i c i a o c l i e n t e NTP
38 t imeCl i ent . begin () ;
39

40 }
41

42 // Função que é chamada quando o bot ão RST fo r press ionado
43 // para l impar a memoria
44 void onPressed ()
45 {
46 S e r i a l . p r i n t l n (”Botão RST f o i pre s s i onado ”) ;
47 WiFi . d i s connec t (t rue) ;
48 delay (2000) ;
49 ESP. r e s e t () ;
50 }
51

52 // Função que é chamada quando as l i g a çõ es forem e s t a b e l e c i d a s
53 // (Wifi and MQTT) .
54 void onConnect ionEstabl i shed ()
55 {
56 // a t u a l i z a a data l ogo que s e j a e s t a b e l e c i d a a l i g a ção
57 t imeCl i ent . update () ;
58 }
59

60 // Função que devo l v e uma s u b s t r i n g de uma s t r i n g com base no
61 // separador e no í ndice . Serve para separar os dados de cada
62 // sensor
63 St r ing getValue (St r ing data , char separator , int index)
64 {
65 int found = 0 ;
66 int s t r Index [] = {0 , −1};
67 int maxIndex = data . l ength () −1;
68

69 for (int i =0; i<=maxIndex && found<=index ; i++){
70 i f (data . charAt (i)==separa to r | | i==maxIndex) {
71 found++;

128

I.2. SoC ESP8266

72 s t r Index [0] = s t r Index [1] + 1 ;
73 s t r Index [1] = (i == maxIndex) ? i+1 : i ;
74 }
75 }
76 return found>index ? data . sub s t r i ng (s t r Index [0] , s t r Index [1]) : ”” ;
77 }
78

79 // fun ção para conver t e r os dados r e c e b i do s pe l a por ta s é r i e
80 // do microcontro lador msp430 para o formato JSON para env iar
81 // por mqtt
82 St r ing convertToJSON (St r ing input)
83 {
84 St r ing j son = ” {\”ID \” :\” ” + getValue (input , ' ' , 0) + ” \” , ” ;
85 j s on += ”\”TIME\” :\” ” + St r ing (t imeCl i ent . getEpochTime ()) + ” \” , ” ;
86 j s on += ”\”STA\” :\” ” + getValue (input , ' ' , 1) + ” \” , ” ;
87 j s on += ”\”SHA\” :\” ” + getValue (input , ' ' , 2) + ” \” , ” ;
88 j s on += ”\”SL1 \” :\” ” + getValue (input , ' ' , 3) + ” \” , ” ;
89 j s on += ”\”SL2 \” :\” ” + getValue (input , ' ' , 4) + ” \” , ” ;
90 j s on += ”\”STS1 \” :\” ” + getValue (input , ' ' , 5) + ” \” , ” ;
91 j s on += ”\”STS2 \” :\” ” + getValue (input , ' ' , 6) + ” \” , ” ;
92 j s on += ”\”STS3 \” :\” ” + getValue (input , ' ' , 7) + ” \” , ” ;
93 j s on += ”\”SHS1\” :\” ” + getValue (input , ' ' , 8) + ” \” , ” ;
94 j s on += ”\”SHS2\” :\” ” + getValue (input , ' ' , 9) + ” \” , ” ;
95 j s on += ”\”SHS3\” :\” ” + getValue (input , ' ' , 10) + ” \” , ” ;
96 j s on += ”\”SVB\” :\” ” + getValue (input , ' ' , 11) + ” \” , ” ;
97 j s on += ”\”SPL\” :\” ” + getValue (input , ' ' , 12) + ” \” , ” ;
98 j s on += ”\”SPR\” :\” ” + getValue (input , ' ' , 13) + ” \” , ” ;
99 j s on += ”\”QOS\” :\” ” + St r ing (s i gna l_qua l i t y ()) + ” \”} ” ;

100

101 return j s on ;
102 }
103

104

105 int s i gna l_qua l i t y ()
106 {
107 i f (WiFi . s t a tu s () != WL_CONNECTED)
108 return −1;
109 int dBm = WiFi . RSSI () ;
110 i f (dBm <= −100)
111 return 0 ;
112 i f (dBm >= −50)
113 return 100 ;
114 return 2 ∗ (dBm + 100) ;

129

I. Código desenvolvido

115 }
116

117

118 void loop ()
119 {
120 button . read () ; // v e r i f i c a o es tado do bot ão RST
121

122 // v e r i f i c a se as conexõ es foram f e i t a s
123 i f (c l i e n t . i sConnected ())
124 {
125 // V e r i f i c a se e x i s t e alguma co i sa no b u f f e r
126 i f (S e r i a l . a v a i l a b l e () >0)
127 {
128 // l ê os dados do b u f f e r s e r i a l
129 St r ing msg = S e r i a l . r eadSt r ing () ;
130

131 t imeCl i ent . update () ; // a t u a l i z a a data
132

133 // p u b l i c a os dados no broker mqtt
134 St r ing payload = convertToJSON (msg) ;
135 c l i e n t . pub l i sh (”LISIMETRO” , payload) ;
136

137 }
138 }
139

140 c l i e n t . loop () ;
141

142 }

Listagem I.12: Código do programa principal do ESP8266 (SoC ESP8266).

I.3 MCU do módulo da câmara

1 /∗ IOT CAMERA − MIOT1819
2 Autor : Car los Almeida
3 Data : 15/10/2021
4 ∗/
5

6 #include <msp430 . h>
7 #include <s t d i n t . h>
8 #include ”CDC. h”

130

I.3. MCU do módulo da câmara

9 #include ” de lay . h”
10

11

12 const unsigned long pool ing_time = 14400; // Pool ing time in seconds
13

14 const unsigned int t_startup = 65 ; // Time to s t a r t u p RPi (seconds)
15 const unsigned int t_shutdown = 10 ; // Time to s t a r t u p RPi (seconds)
16

17

18 unsigned long seconds ; // Seconds counter
19

20

21 stat ic const unsigned int ID = C1901 ; // ID da Camera
22

23

24 unsigned int SVB = 0 ; // Sensor Voltagem Bater ia [mV]
25

26 unsigned int arraySamples [1] ; // ADC samples array
27

28

29 void GPIO_Init (void) ;
30 void BCM_Init(void) ;
31 void TIMER_Init (void) ;
32 void USCI_A0_Init (void) ;
33 void ADC10_Init (void) ;
34 void ADC10_StartSampling (void) ;
35 void sendData (void) ;
36

37

38 void main (void)
39 {
40 WDTCTL = WDTPW | WDTHOLD; // s top watchdog t imer
41

42 seconds = pool ing_time − 1 ;
43

44 GPIO_Init () ;
45 BCM_Init () ;
46 TIMER_Init () ;
47 USCI_A0_Init () ;
48 ADC10_Init () ;
49 ADC10_StartSampling () ;
50

51 _enable_interrupts () ;

131

I. Código desenvolvido

52

53

54 while (1)
55 {
56 i f (seconds == pool ing_time) //
57 {
58 P1OUT |= BIT0 ; // Power ON
59

60 seconds = 0 ;
61 while (seconds < t_startup) ;
62

63

64 //∗ADC∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
65 ADC10_StartSampling () ;
66 SVB = arraySamples [0] ;
67 delay_ms (100) ; //
68 sendData () ;
69 seconds = 0 ;
70 while (seconds < t_shutdown) ;
71 P1OUT &= ~BIT0 ; // Power OFF
72 }
73

74 __low_power_mode_3 () ;
75 }
76 }
77

78

79 void sendData (void)
80 {
81 p_ui (ID) ; ec (” ”) ;
82 p_ui (SVB) ; ec (” ”) ;
83 p_ui (SCB) ; ec (” ”) ;
84 LF_() ;
85 CR_() ;
86 }
87

88

89 void GPIO_Init ()
90 {
91 P1OUT = (0 x00) ;
92 // P1DIR = (0xFF) ;
93 P1DIR = (BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0) ; // P1DIR

= (0xF7) ; BIT7−>IN

132

I.3. MCU do módulo da câmara

94

95 // USCI :
96 P1SEL |= (BIT2 | BIT1) ; // UCA0TXD , UCA0RXD
97 P1SEL2 |= (BIT2 | BIT1) ; // UCA0TXD , UCA0RXD
98

99

100 P1REN |= BIT7 ; // enab l e pu l l −up/ pu l l −down r e s i s t o r
101 P1OUT |= BIT7 ; // s e l e c t pu l l −up r e s i s t o r
102

103 P1IES |= BIT7 ; // s e l e c t edge i n t e r r u p t high−>low t r a n s i t i o n
104 P1IFG = 0x00 ; // c l e a r P1IFG s ince w r i t i n g to P1OUT, P1DIR, P2OUT

, or P2DIR can r e s u l t in s e t t i n g the corresponding P1IFG
105 // or P2IFG f l a g s . (s l au144 j pg .331)
106 P1IE |= BIT7 ; // enab l e i n t e r r u p t on P1 .7
107

108 }
109

110

111

112 void BCM_Init ()
113 {
114 DCOCTL = CALDCO_8MHZ; // DCO frequency s e l e c t and Modulator

s e l e c t i o n :
115 // are s e t wi th f a c t o r y c a l i b r a t e d va lue
116 BCSCTL1 = XT2OFF // XT2 o f f
117 | CALBC1_8MHZ // Range s e l e c t : f a c t o r y va lue f o r 8MHz
118 | DIVA_0; // ACLK Div ider : 0−>/1, 1_>/2, 2−>/4, 3−>/8
119

120 BCSCTL2 = SELM_0 // S e l e c t the MCLK source : 0−>DCOCLK, 1−>
DCOCLK, 2−> XT2CLK when XT2, 3−>LFXT1CLK or VLOCLK

121 | DIVM_0 // MCLK Div ider : 0−>/1, 1_>/2, 2−>/4, 3−>/8
122 | DIVS_0 ; // SMCLK Div ider : 0−>/1, 1_>/2, 2−>/4,

3−>/8:
123

124 BCSCTL3 = LFXT1S_2 ; // Low−frequency c l o c k s e l e c t and LFXT1
range : 0−>Crys ta l 32768Hz , 2−>VLOCLK, 3−>Ext CLK

125 }
126

127

128 void USCI_A0_Init (void)
129 {
130 // UART Mode : 9600 8N1
131

133

I. Código desenvolvido

132 UCA0CTL1 = UCSSEL_2; // USCI c l o c k source s e l e c t : SMCLK
133 // From Table 36.4 in s l au144 j :
134 // BRCLK Frequency (Hz) Baud Rate UCBRx UCBRSx UCBRFx
135 // 8 000 000 9600 833 2 0
136 UCA0BR0 = 0x41 ; // UCBRx = 833 = 0x341
137 UCA0BR1 = 0x03 ;
138 UCA0MCTL = UCBRS_2;
139 // USCI r e s e t r e l e a s e d f o r opera t ion :
140 UCA0CTL1 &= ~ UCSWRST;
141

142 IE2 |= UCA0RXIE; // USCI_A0 r e c e i v e i n t e r r u p t enab l e
143 }
144

145 #pragma vec to r = USCIAB0RX_VECTOR
146 __interrupt void USCIA0RX_ISR(void)
147 {
148 while (! (IFG2 & UCA0TXIFG)) ;
149 UCA0TXBUF = UCA0RXBUF;
150 }
151

152

153 void TIMER_Init ()
154 {
155 // Timer A0 s e t t i n g s f o r 1 s counter
156 TA0CCTL0 = CCIE ; // Capture/Compare I n t e r r u p t Enable
157

158 TA0CTL = TASSEL_1 // Clock source = 0−>TACLK, 1−>ACLK, 2−>SMCLK,
3−>INCLK

159 | MC_1 // Mode c o n t r o l = 1−>UP / 2−>CONTINUOS / 3−>UP/
DOWN

160 | ID_0 ; // Div ider = 0−>/1, 1−>/2, 2−>/4, 3−>/8
161 TA0CCR0 = 10350 ; // Compare va lue : 32768 f o r 32768Hz c r y s t a l ,

10000 f o r 10KHz VLOCLK (10350 a f t e r 1 s c a l i b r a t i o n)
162

163 // Timer A1 s e t t i n g s f o r PWM servo c o n t r o l
164 TA1CTL = TASSEL_2 // Clock source = 0−>TACLK, 1−>ACLK, 2−>SMCLK,

3−>INCLK
165 | TACLR // Timer_A1 c l e a r
166 | MC_1 // Mode c o n t r o l = 1−>UP / 2−>CONTINUOS / 3−>UP/

DOWN
167 | ID_3 ; // Div ider = 0−>/1, 1−>/2, 2−>/4, 3−>/8
168 TA1CCR0 = 20000 ; // Capture and Compare : 20000=> F=50Hz , T=20ms
169 TA1CCTL2 |= OUTMOD_7; // Output Mode : 7−> Reset / Set

134

I.3. MCU do módulo da câmara

170 }
171

172

173 #pragma vec to r = TIMER0_A0_VECTOR
174 __interrupt void TIMER0_A0_ISR(void)
175 {
176 ++ seconds ;
177 __low_power_mode_off_on_exit () ;
178 }
179

180

181 #pragma vec to r = PORT1_VECTOR
182 __interrupt void Port1_ISR (void)
183 {
184 i f (P1IFG & BIT7) // sw i t ch pres sed
185 {
186 seconds = pool ing_time − 1 ;
187 }
188 P1IFG &= ~BIT7 ; // c l e a r i n t e r r u p t f l a g o f P1 .3
189 }
190

191

192 void ADC10_Init (void)
193 {
194 // ADC10 Contro l Reg i s t e r 0 :
195 ADC10CTL0 = SREF_1 // S e l e c t r e f e r ence : VR+ = VREF+ and VR− =

VSS
196 | ADC10SHT_0 // ADC10 sample−and−ho ld time : 4 ï¿½

ADC10CLKs
197 | ADC10SR // ADC10 sampling ra t e : Reference b u f f e r

suppor t s up
198 // to ~50 ksps
199 | REFBURST // Reference b u f f e r on only during
200 // sample−and−convers ion
201 | MSC // Mu l t i p l e sample and convers ion
202 | REF2_5V // Reference−genera tor v o l t a g e 2.5V
203 | REFON // Reference genera tor on : V_REF+ take s 30

us to
204 // s e t t l e (s l au144 j pg . 38)
205 | ADC10ON // ADC10 on
206 | ADC10IE ; // ADC10 i n t e r r u p t enab l e
207

208 // ADC10 Contro l Reg i s t e r 1 :

135

I. Código desenvolvido

209 ADC10CTL1 = INCH_6 // Input channel s e l e c t i o n : A6−A5−A4−A3
210 | SHS_0 // Sample−and ho ld source s e l e c t :
211 | ADC10DIV_3 // ADC10 c l o c k d i v i d e r : /4
212 | ADC10SSEL_0 // ADC10 c l o c k source s e l e c t : ADC10OSC − 0
213 | CONSEQ_1; // Conversion sequence mode s e l e c t :
214 // Sequence−of−channe l s (A7 − A6 − A5 −

A4)
215

216

217 // Analog (Input) Enable Contro l Reg i s t e r 0 :
218 ADC10AE0 |= BIT3
219 | BIT4 // ADC10 analog enab l e : A7 on P1 .7
220 | BIT5 // ADC10 analog enab l e : A6 on P1 .6
221 | BIT6 ; //
222

223

224 // ADC10 data t r a n s f e r c o n t r o l r e g i s t e r 1 :
225 ADC10DTC1 = 4 ; // Define the number o f t r a n s f e r s : 4 va l u e s
226 }
227

228

229 void ADC10_StartSampling (void)
230 {
231 // wh i l e (ADC10CTL1 & ADC10BUSY) ; // Wait i f ADC10 core i s a c t i v e
232 // ADC10 data t r a n s f e r s t a r t address :
233

234 ADC10SA = (unsigned int) arraySamples ; // ADC10 s t a r t address
235 ADC10CTL0 |= ENC // Enable convers ion
236 | ADC10SC;
237 delay_ms (1) ;
238 }
239

240 #pragma vec to r = ADC10_VECTOR
241 __interrupt void ADC10_ISR(void)
242 {
243

244 ADC10CTL0 &= ~ENC;
245 __low_power_mode_off_on_exit () ;
246 }

Listagem I.13: Código main.c MCU (Módulo câmara).

136

I.4. SBC RPi

I.4 SBC RPi

1

2 import time
3 import os
4 from camera import takePhoto
5 from copyimage import copyImage
6 from time import s l e e p
7 from shut_down import shut_d
8 from mqtt import mqtt
9

10

11

12 def main () :
13

14 try :
15 takePhoto ()
16 except Exception as e :
17 print (” type e r r o r : ” + str (e) + ” Problema com a câmara ! ”)
18 try :
19 copyImage ()
20 except Exception as f :
21 print (” type e r r o r : ” + str (f) + ” Problema com SSH ! ”)
22

23 try :
24 mqtt ()
25 except Exception as e :
26 print (” type e r r o r : ” + str (e) + ” Problema com MQTT! ”)
27

28 shut_d ()
29

30 i f __name__ == ”__main__” :
31 main ()

Listagem I.14: Código start.py SBC

1 #!/ usr / b in /env python
2 from picamera import PiCamera
3 from time import s l e e p
4 import datet ime
5 from copyimage import copyImage
6

7 PATH = ”/home/ pi / l y s i m e t e r / image/”

137

I. Código desenvolvido

8

9 def takePhoto () :
10 camera = PiCamera ()
11 name_photo = datet ime . datet ime . now () . s t r f t i m e ('%Y%m%d−%H%M%S . jpg ')
12 print (” Star t image capture , wait ”)
13 s l e e p (5) # Time to a d j u s t image
14 try :
15 # p r i n t (” I n i c i a r captura ”)
16 camera . r e s o l u t i o n = (3280 , 2464)
17 camera . capture (PATH + ” ” + name_photo)
18 # p r i n t (”Fim de captura ”)
19 # s l e e p (1)
20 except Exception as e :
21 print (” type e r r o r : ” + str (e))
22 print (”End capture ”)
23

24 def main () :
25 takePhoto ()
26

27

28 i f __name__ == ”__main__” :
29 main ()

Listagem I.15: Código camera.py SBC.

1 #!/ usr / b in / python
2 import os
3

4 HOST = ” l i s i m e t r o @ l y s i m e t e r . ddns f r ee . com : ”
5 PORT = ”22”
6 LOCAL_PATH = ”/home/ pi / l y s i m e t e r / image/”
7 SERVER_PATH = ”/home/ l i s i m e t r o / image”
8

9 def copyImage () :
10 print (” scp −P ”+ PORT + ” ” + LOCAL_PATH + ” ∗ . jpg ” + HOST +

SERVER_PATH)
11 os . system (” scp −P ” + PORT + ” ” + LOCAL_PATH + ” ∗ . jpg ” + HOST +

SERVER_PATH)
12 os . system (”rm ” + LOCAL_PATH + ” ∗ . jpg ”)
13 print (”Done − F i l e in s e r v e r ! ”)
14

15 def main () :
16 copyImage ()

138

I.4. SBC RPi

17

18 i f __name__ == ”__main__” :
19 main ()

Listagem I.16: Código copyimage.py SBC.

1 import time
2 import paho . mqtt . c l i e n t as paho
3 import s e r i a l
4 import re
5 import j s on
6 import os
7 from datet ime import datet ime
8 from camera import takePhoto
9

10 # t h i s por t address i s f o r the s e r i a l t x / rx p ins on the GPIO header
11 SERIAL_PORT = ”/dev/ ttyS0 ”
12 # be sure to s e t t h i s to the same ra t e used on the Arduino
13 SERIAL_RATE = 9600
14

15

16 def mqtt (data) :
17

18 keys = [”ID” , ”SVB”]
19 va lues = re . s p l i t (”\ s+” , data)
20 va lues = [x for x in va lues i f x] # remove n u l l i tems
21 new_dict = dict (zip (keys , va lue s))
22 new_dict [”TIME”] = str (datet ime . now ())
23 print (” r e c e i v e d message =” , new_dict)
24 new_dict [”SL”] = str (g e t_s i gna l_ l eve l (wlan0))
25 t op i c = ”CAMARA”
26 print (”TOPIC: ” , t op i c)
27 data = {
28 ”ID” : new_dict [”ID”] ,
29 ”TIME” : new_dict [”TIME”] ,
30 ”SVB” : new_dict [”SVB”] ,
31 ”SL” : new_dict [”SL”] ,
32 }
33

34 data = json . dumps(data , en su r e_asc i i=True)
35 print (”JSON DUMP =” , data)
36 broker = ” l y s i m e t e r . ddns f r ee . com”
37 # reading i s a s t r i n g . . . do whatever you want from here

139

I. Código desenvolvido

38 c l i e n t = paho . C l i en t (” c l i e n t −001”)
39 print (” connect ing to broker ” , broker)
40 c l i e n t . connect (broker , 1883 , 60) # connect
41 c l i e n t . l oop_start () # s t a r t loop to proces s r e c e i v ed messages
42 c l i e n t . sub s c r i b e (t op i c) # s u b s c r i b e
43 c l i e n t . pub l i sh (top ic , data) # p u b l i s h
44

45

46 def main () :
47 print (”A espera de dados porta s é r i e ”)
48 s e r = s e r i a l . S e r i a l (SERIAL_PORT, SERIAL_RATE)
49 while True :
50 # using ser . r e a d l i n e () assumes each l i n e conta ins a s i n g l e

read ing
51 # sent us ing S e r i a l . p r i n t l n ()
52 read ing = s e r . r e a d l i n e () . decode (” utf −8”)
53 mqtt (read ing)
54

55

56 i f __name__ == ”__main__” :
57 main ()

Listagem I.17: Código mqtt.py SBC.

1 import time
2 import os
3

4 def shut_d () :
5 print (”The system w i l l shutdown in 10 s (Ctr l + C to cance l) ”)
6 for i in xrange (10 , 0 , −1) :
7 time . s l e e p (1)
8 print (i)
9 os . system (” sudo shutdown now”)

10

11 def main () :
12 shut_d ()
13

14 i f __name__ == ”__main__” :
15 main ()

Listagem I.18: Código shutd.py SBC.

140

I.5. Node-Red

I.5 Node-Red

1 var ID = {” payload ” : msg . payload . ID } ;
2

3 var TA = {” payload ” : msg . payload .TA} ;
4 var HA = {” payload ” : msg . payload .HA} ;
5 var L1 = {” payload ” : msg . payload . L1 } ;
6 var L2 = {” payload ” : msg . payload . L2 } ;
7

8 var TS1 = {” payload ” : msg . payload . TS1 } ;
9 var TS2 = {” payload ” : msg . payload . TS2 } ;

10 var TS3 = {” payload ” : msg . payload . TS3 } ;
11

12

13 var HS1 = SHS_convert (pa r s e In t (msg . payload . HS1))
14 var HS2 = SHS_convert (pa r s e In t (msg . payload . HS2))
15 var HS3 = SHS_convert (pa r s e In t (msg . payload . HS3))
16

17

18 var PL = {” payload ” : msg . payload .PL} ;
19 var PR = {” payload ” : msg . payload .PR} ;
20

21 var VB = SVB_convert (par seF loat (msg . payload .VB)) ;
22

23 var T = {” payload ” : msg . payload .T} ;
24

25

26 f unc t i on SHS_convert (SHS) { // Converte a sa ida ADC em percentagem de
humidade

27 var aux = par s e In t ((−0.3052∗SHS)+ 258 .29) ; // (SHS∗(−1.3585)+809)
28 i f (aux > 100) aux = 100 ;
29 i f (aux < 0) aux = 0 ;
30 return {” payload ” : aux . t oS t r i ng () } ;
31 }
32

33 f unc t i on SVB_convert (SVB) { // Converte sa ida ADC na tensao da b a t e r i a
em m i l i v o l t s

34 return {” payload ” : pa r s e In t ((SVB ∗ 5 . 0)) . t oS t r i ng () } ;
35 }
36

37 var NS = {” payload ” : msg . payload .NS} ;
38

39

141

I. Código desenvolvido

40 return [TA, HA, L1 , L2 , TS1 , TS2 , TS3 , HS1 , HS2 , HS3 , PL, PR, VB, T, ID
, NS] ;

Listagem I.19: Código Data.js

142

Apêndice II

Esquemas elétricos / Desenhos PCB

II.1 Esquema elétrico do módulo lisímetro.
II.2 Esquema elétrico do módulo câmara.
II.3 Aspeto da parte frontal da PCB (KiCad).
II.4 Aspeto da parte traseira da PCB (KiCad).

143

II. Esquemas elétricos / Desenhos PCB

II.1 Esquema Elétrico do Módulo Lisímetro

144

II.2. Esquema Elétrico do Módulo Câmara

II.2 Esquema Elétrico do Módulo Câmara

145

II. Esquemas elétricos / Desenhos PCB

II.3 Parte frontal da PCB câmara (KiCad)

II.4 Parte traseira da PCB câmara (KiCad)

146

Apêndice III

Custo de implementação

Orçamento de componentes para construção do
prototipo

147

III. Custo de implementação

Tabela III.1: Cotação de material para o módulo lisímetro.

Qt. Descrição P.Unit. Valor

1 MCU MSP430G2553 - DIP20 2.35€ 2.35€
1 Módulo ESP8266 - ESP01 4.55€ 4.55€
1 Placa Circuito Impresso Perfurada 7.47€ 7.47€
1 Transistor DMP2022 1.20€ 1.20€
1 Transistor BC847 0.10€ 0.10€
2 Regulador de Tensão MCP1700-3302E 0.90€ 1.80€
8 Resistências de carvão 1/4W 0.15€ 1.20€
6 Condensadores 10nF 50V 0.15€ 0.90€
2 Condensadores 100nF 50V 0.18€ 0.36€
4 Condensadores 1uF 50V 0.22€ 0.88€
2 Interrutor de pressão PCB 0.17€ 0.34€
15 CABO LiYCY-DIN 4x0,50 0.97€ 14.55€
4 Blocos 3 terminais 0.25€ 1.00€
5 Blocos 2 terminais 0.18€ 0.90 €
1 Painel solar 5V 1W 4.75€ 4.75€
1 Bateria Li-Ion MR18650 3,6V 3500mAh 8.75€ 8.75€
1 Módulo controlador de carga TP4056 1.96€ 1.96€
1 Suporte bateria MR18650 c/ fios 1.75€ 1.75€
1 Módulo sensor Temp/Humidade SHT30 19.25€ 19.25€
1 Módulo sensor luminosidade TLS2561 4.80€ 4.80€
3 Sensor temperatura DS18B20 - IP67 9.30€ 27.90€
3 Sensor de humidade solo capacitivo 8.20€ 24.60€
1 Módulo HX711 4.95€ 4.95€
4 Células de carga 1/2 Ponte 0-50Kg 9.50€ 38.00€
1 Células de carga 0-10Kg 13.50€ 13.50€
1 Servo motor HiTEC HS-422 11.81€ 11.81€
1 Caixa IP65 82.1x158.5x55mm 4.02€ 4.02€
1 Caixa IP65 50x70x36mm 2.03€ 2.03€
4 Caixa IP65 40x64x30mm 1.89€ 7.56€
16 Bucins PG7 - IP65 1.02€ 16.32€
1 Vaso Polietileno 25L 6.80€ 6.80€
1 Recipiente plástico 1,5L 1.95€ 1.95€

Total 238.30€

148

Tabela III.2: Cotação de material para o módulo câmara.

Qt. Descrição P.Unit. Valor

1 SBC Raspberry Pi 3B+ 39.90€ 39.90€
1 Cartão SD 16GB 6.00€ 6.00€
1 Módulo câmara Raspberry Pi V2 27.57€ 27.57€
1 MCU MSP430G2553 - DIP20 2.35€ 2.35€
1 Placa de circuito impresso 1 face 4.90€ 4.90€
1 Transistor DMP2022 1.20€ 1.20€
1 Transistor BC847 0.10€ 0.10€
1 Regulador de Tensão MCP1700-3302E 0.90€ 1.80€
1 Módulo conversor DC/DC VMA402 9.90€ 9.90€
7 Resistências SMD 0.10€ 0.70€
8 Condensadores SMD 0.26€ 2.08€
1 Interruptor de pressão PCB 0.17€ 0.34€
1 Blocos 2 terminais 0.18€ 0.90€
1 Painel solar 5V 1W 4.75€ 4.75€
1 Bateria Li-Ion MR18650 3,6V 3500mAh 8.75€ 8.75€
1 Módulo controlador de carga TP4056 1.96€ 1.96€
1 Suporte bateria MR18650 PCB 3.26€ 3.26€
1 Caixa IP65 82.1x158.5x55mm 4.02€ 4.02€

Total 118.69€

149

Anexos

151

Anexo I

Datasheets dos componentes

1. MCU: 01-MSP430g2550.pdf

2. SoC: 02-ESP-01.pdf

3. Sensor de temperatura e humidade: 03-SHT3x.pdf

4. Sensor de luminosidade: 04-TSL2561.pdf

5. Sensor de temperatura: 05-DS18B20.pdf

6. Sensor de humidade do solo: 06-CMSC.pdf

7. Sensor de peso 1/2 ponte: 07-Loadsensor.pdf

8. Conversor ADC p/ sensores de peso: 08-HX711.pdf

9. Sensor peso ponte completa: 09-TAL220M4M5.pdf

10. Servo-motor: 10-HS422.pdf

11. Controlador de carga da bateria: 11-TP4096.pdf

12. Bateria Li-Ion: 12-INR8650-35e.pdf

13. Transístor P-Mosfet : 13-DMP2022LSS.pdf

14. Transístor NPN: 14-BC847-D.pdf

15. Regulador de tensão: 15-MCP1700-330.pdf

16. Placa de desenvolvimento: 16-MSP430-EXP430G2ET.pdf

153

I. Datasheets dos componentes

17. Placa programação SoC: 17-SBC-ESP8266-Prog.pdf

18. SBC: 18-RPi3b+.pdf

19. Conversor DC/DC : 19-LM2577.pdf

154

	Agradecimentos
	Resumo
	Abstract
	Índice
	Índice de Figuras
	Índice de Tabelas
	Índice de Listagens
	Abreviaturas e Siglas
	1 Introdução
	1.1 Enquadramento da Dissertação
	1.2 Contributos da Dissertação
	1.3 Estrutura do Documento

	2 Estado da Arte
	2.1 Introdução
	2.2 Lisímetros
	2.3 Aquisição de Imagem
	2.4 Análise de Colheitas
	2.5 Conclusão

	3 Arquitetura do Lisímetro
	3.1 Estrutura Geral do Lisímetro
	3.1.1 Camada Física
	3.1.2 Camada na Nuvem
	3.1.3 Camada de Aplicação

	3.2 Arquitetura do Hardware
	3.3 Conclusão

	4 Implementação Experimental
	4.1 Introdução
	4.2 Módulo Lisímetro
	4.2.1 Escolha de componentes
	4.2.2 Implementação do módulo do lisímetro

	4.3 Módulo Câmara
	4.3.1 Escolha de componentes de hardware
	4.3.2 Implementação do módulo câmara

	4.4 Módulo de Computação na Nuvem
	4.5 Estrutura de Suporte
	4.6 Aspetos Experimentais
	4.6.1 Construção do protótipo
	4.6.2 Gestão de energia
	4.6.3 Visualização dos dados

	4.7 Conclusão

	5 Conclusões
	5.1 Conclusões gerais
	5.2 Desenvolvimento Futuro

	Bibliografia
	Apêndices
	I Código desenvolvido
	I.1 MCU Módulo lisímetro
	I.2 SoC ESP8266
	I.3 MCU do módulo da câmara
	I.4 SBC RPi
	I.5 Node-Red

	II Esquemas elétricos / Desenhos PCB
	II.1 Esquema Elétrico do Módulo Lisímetro
	II.2 Esquema Elétrico do Módulo Câmara
	II.3 Parte frontal da PCB câmara (KiCad)
	II.4 Parte traseira da PCB câmara (KiCad)

	III Custo de implementação
	Anexos
	I Datasheets dos componentes

